def keygen(n):
    """
    Benaloh kriptosistemi ile public, private anahtarlari olusturup
    sirasiyla publickey.txt, privatekey.txt dosyalarina yazar.
    Arguments:
        n (int) : anahtar bit uzunlugu
    """
    p = q = y = x = None

    while True:
        p = generate_random(n // 2)
        if (p - 1) % r == 0 and isprime(p) == 1 and math.gcd(
                r, int((p - 1) / r)) == 1:
            break

    while True:
        q = generate_random(n // 2)
        if isprime(q) == 1 and math.gcd(r, int(q - 1)) == 1:
            break

    n_ = p * q
    phi = (p - 1) * (q - 1)

    while True:
        y = randrange(1, n_)
        if math.gcd(y, n_) == 1:
            x = pow(y, phi * pow(r, -1, n_) % n_, n_)
            if x != 1:
                break

    with open("publickey.txt", "w+") as publickey_file:
        publickey_file.write(str(n_) + '\n' + str(y))

    with open("privatekey.txt", "w+") as privatekey_file:
        privatekey_file.write(str(n_) + '\n' + str(phi) + '\n' + str(x))
Ejemplo n.º 2
0
def problem_10():
    
    running_sum = 2
    for value in xrange(3, int(2E6)+1, 2):
        if functions.isprime(value):
            running_sum += value

    return running_sum
Ejemplo n.º 3
0
def quadratic(a,b):
    primecount = 0
    for n in range(100):
        if(isprime(n**2+a*n+b)==1):
            primecount += 1
        else:
            break
    return(primecount)
Ejemplo n.º 4
0
def problem_3(N=600851475143):
    """ prime factors of 13195 are 5, 7, 13 and 29.

    What is the largest prime factor of the number 600851475143 ?

    """

    all_factors = list(functions.factors(N))
    
    max_prime = 1
    for factor in all_factors:
        if factor > max_prime and functions.isprime(factor):
            max_prime = factor

    return max_prime
Ejemplo n.º 5
0
def problem_7(N=10001):
    """By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13,
    we can see that the 6th prime is 13.

    What is the 10 001st prime number?

    """

    count = 0
    value = 0
    while count < N:
        value += 1

        if (not value % 2) and (value != 2):
            continue

        if functions.isprime(value):
            count += 1
        
    return value
Ejemplo n.º 6
0
def keygen(n):
  w=[];wtotal=0;rcontrol=0;controlPrime=0
  y=secrets.randbits(32)
  w.append(y)
  while len(w)!=8:
    total=0
    total=sum(w)
    w.append(total+1)
  wtotal=sum(w)
  while controlPrime==0:
    qNumber= random.randint(wtotal,wtotal+1000)
    primeNumber=functions.isprime(qNumber)
    if(primeNumber==0):
      controlPrime=0
    else:
      controlPrime=1
  while rcontrol==0:
    rNumber= random.randint(1,1000)
    gcd_q_r=math.gcd(qNumber,rNumber)
    if(gcd_q_r==1):
      rcontrol=1
    else:
      rcontrol=0
  BArray=[]
  for i in w:
    b=(rNumber*i)%qNumber
    BArray.append(b)
  with open("publickey.txt","w") as public:
    for i in BArray:
      public.write(str(i)+" ")
  private_key=(w,qNumber,rNumber)
  with open("privatekey.txt","w") as private:
    for i in w:
      private.write(str(i)+" ")
    private.write("-"+str(qNumber))
    private.write("-"+str(rNumber))
Ejemplo n.º 7
0
def generatePrimeNumber(n):
    p = 42
    while not functions.isprime(p):
        p = generateBigNumber(n)
    return p
Ejemplo n.º 8
0
#!/usr/bin/python3
# -*- coding: utf-8 -*-

from functions import isprime

asal, n, p = 3, 9, 4

while (asal / (2 * p + 1) > 0.1):
    for m in range(1, 5):
        n += p
        if (isprime(n) == 1):
            asal += 1
    p += 2
print(p + 1)  # p kadar ekleyince karenin bir kenarı p+1 oluyor
Ejemplo n.º 9
0
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13.
# What is the 10 001st prime number?

from functions import isprime

n,p = 0,1
while n<10001:
    p += 1
    if(isprime(p)==1):
        n += 1
print(p)

Ejemplo n.º 10
0
import functions as func
import numpy as np

primes = [2, 3]
value = 5
for i in np.arange(5, 2000000, 2):
    if func.isprime(i):
        primes.append(i)
        value += float(i)
print(primes)
print(value)
Ejemplo n.º 11
0
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# The prime 41, can be written as the sum of six consecutive primes:
#           41 = 2 + 3 + 5 + 7 + 11 + 13
# This is the longest sum of consecutive primes that adds to a prime below one-hundred.
# The longest sum of consecutive primes below one-thousand that adds to a prime, contains 21 terms, and is equal to 953.
# Which prime, below one-million, can be written as the sum of the most consecutive primes?
from functions import isprime
maks=1
primes=[]
for i in range(2,1000000):
    if isprime(i)==1:
        primes.append(i)
for p in range(100,600):
    for i in range(len(primes)-p-1):
        sums = 0
        for j in range(p):
            sums += primes[i+j]
        if (i==1) and sums>primes[-1]:
            break
        if(primes.count(sums)==1):
            maks=sums
print(maks)
Ejemplo n.º 12
0
from functions import allprimes
from functions import isprime
import random
deneme = 0
koltuklar=allprimes(100)
while(len(koltuklar)>0):
    tercih = random.randint(1,200)%98
    deneme += 1
    if(isprime(tercih)==1 and koltuklar.count(tercih)==1):
        koltuklar.remove(tercih)
print(deneme)

Ejemplo n.º 13
0
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# The number, 197, is called a circular prime because all rotations of the digits: 197, 971, and 719, are themselves prime.
# There are thirteen such primes below 100: 2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, and 97.
# How many circular primes are there below one million?

from functions import isprime

sonuc = 13
for n in range(101, 1000000, 2):
    if (isprime(n) == 0):
        continue
    for p in range(len(str(n))):
        if (isprime(int(n)) == 0):
            break
        n = list(str(n))
        n.append(n[0])
        n.remove(n[0])
        n = ''.join(str(i) for i in n)
    else:
        sonuc += 1
print(sonuc)
Ejemplo n.º 14
0
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# The number, 197, is called a circular prime because all rotations of the digits: 197, 971, and 719, are themselves prime.
# There are thirteen such primes below 100: 2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, and 97.
# How many circular primes are there below one million?

from functions import isprime

sonuc = 13
for n in range(101,1000000,2):
    if(isprime(n)==0):
        continue
    for p in range(len(str(n))):
        if(isprime(int(n))==0):
            break
        n=list(str(n))
        n.append(n[0])
        n.remove(n[0])
        n=''.join(str(i) for i in n)
    else:
        sonuc +=1
print(sonuc)
Ejemplo n.º 15
0
# Eoin Lees
# Computing the primes.

from functions import isprime

# My list of Primes - TBD
P = []

# Loop through all of the numbers we're checking for Primality.
for i in range(2, 100):

    # If i is prime, then append to P.
    if isprime(i):
        P.append(i)

# Print out our list
print(P)
Ejemplo n.º 16
0
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# Find the sum of all the primes below two million.
from functions import isprime
toplam = 0
for i in range(2, 2000000):
    if isprime(i) == 1:
        toplam += i
print(toplam)
Ejemplo n.º 17
0
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# The prime 41, can be written as the sum of six consecutive primes:
#           41 = 2 + 3 + 5 + 7 + 11 + 13
# This is the longest sum of consecutive primes that adds to a prime below one-hundred.
# The longest sum of consecutive primes below one-thousand that adds to a prime, contains 21 terms, and is equal to 953.
# Which prime, below one-million, can be written as the sum of the most consecutive primes?
from functions import isprime
from functions import allprimes

asal = allprimes(4000)
toplam = []

for p in range(5,len(asal)):
    for a in range(0,len(asal)-p):
        if(isprime(sum(asal[a:a+p]))==1 and sum(asal[a:a+p])<1000000):
            toplam.append(sum(asal[a:a+p]))
print(toplam[-1])
Ejemplo n.º 18
0
# 10001 inci asal sayıyı bulan kod.
# 10001. prime number

from functions import isprime

n, p = 0, 1
while n < 10001:
    p += 1
    if (isprime(p) == 1):
        n += 1
print(p)
Ejemplo n.º 19
0
from functions import allprimes
from functions import isprime
import random
deneme = 0
koltuklar = allprimes(100)
while (len(koltuklar) > 0):
    tercih = random.randint(1, 200) % 98
    deneme += 1
    if (isprime(tercih) == 1 and koltuklar.count(tercih) == 1):
        koltuklar.remove(tercih)
print(deneme)
Ejemplo n.º 20
0
import numpy as np
import scipy as sp
import pandas as pd
import functions as func
import matplotlib.pyplot as plt
primes = [2,3]
number = 3
while len(primes) < 10001:
    if func.isprime(number):
        primes.append(number)
    number+=2
print(primes[-1])
Ejemplo n.º 21
0
#!/usr/bin/python3
# -*- coding: utf-8 -*-

from functions import isprime

asal,n,p = 3,9,4

while (asal/(2*p+1)>0.1):
    for m in range(1,5):
        n += p
        if(isprime(n)==1):
            asal += 1
    p += 2
print(p+1)# p kadar ekleyince karenin bir kenarı p+1 oluyor