def load_data_callback(country_in): app.server.logger.info('load_data_callback') if not country_in: raise PreventUpdate load_data(country_in, all_data_dict, app) region_drp, province_drp = data2dropdown(country_in, all_data_dict) return region_drp, province_drp, 'done'
def run_model(self, datafile): """Run the prep-fews model Returns a dict witht the different performance measures """ time_series = fun.load_data(datafile) for event in time_series['Runoff']: # calculate losses if no forecasting system is operational climate_loss = self.estimate_damage(event) # calculate losses if a forecasting system is operational forecast = self.issue_forecast(event) warning_outcome = self.assess_warning_outcome(event, forecast) warning_damage = self.get_warning_damage(event, warning_outcome, self.preparedness) warning_loss = self.get_warning_loss(event, warning_outcome, self.preparedness) # keep track of the states of the model self.forecast_ls.append(forecast) self.outcome_ls.append(warning_outcome) self.warning_loss_ls.append(warning_loss) self.climate_loss_ls.append(climate_loss) self.warning_damage_ls.append(warning_damage) self.preparedness_ls.append(self.preparedness) # update the variables if self.ct_prep is False: self.preparedness = self.update_preparedness( warning_damage, self.preparedness)
def data() -> list: name_file = input("Wprowadź nazwę pliku: ") m = functions.load_data(name_file) print("Twoja macierz:") for s in m: print("wybór", *s) return m
def main(): start_time = time.time() in_arg = args_input() # get the data dataset, dataloaders = functions.load_data() # get the model model = functions.get_model(in_arg.arch) # get the classifier, criterion, optimizer, device model, classifier, criterion, optimizer, device = network_param( model, in_arg.arch, in_arg.hidden_units, in_arg.learning_rate, in_arg.gpu) model.to(device) print('Training model...') functions.train_model(model, criterion, optimizer, device, dataloaders['train'], dataloaders['val'], in_arg.epochs) # validation on test data print('\nGetting results on test data accuracy...') functions.test_model(model, criterion, device, dataloaders['test']) # saving checkpoint on trained model print('\nSaving checkpoint for current trained model...') functions.save_checkpoint(model, optimizer, dataset, in_arg.arch, in_arg.epochs, in_arg.save_dir) print('Checkpoint saved!')
def __init__(self, name): print(name) self.name = name self.scores, self.best_scores, self.mean_scores, self.std_scores = functions.load_data(self.name) self.N_population = 2 self.last_gen = [] for i in range(self.N_population): self.last_gen.append(torch.load(self.name+"/TorchSaves/Last_Gen"+str(998+i)+".pt"))
def data(): name_file = input("Wprowadź nazwę pliku: ") m = functions.load_data(name_file) print("Twoja macierz:") print("A/B") for s in m: print(*s) return m
def main(): data, optimal = f.load_data() params = f.load_parameters() print("Optimal:: {}\n".format(optimal)) der_uebermensch, fitness_dictionary, error = genetik.NaturalSelection( len(data), params, data, optimal) print(der_uebermensch) if params["graph_data"] is True: f.show_graph(fitness_dictionary, params, error) else: quit()
def __removing_from_blacklist(self): """Удаление пользователя с чёрного списка""" def remove_user(uid, black_list): """Удаление пользователя""" if uid in black_list: black_list.remove(uid) # уведомление message = "\n - Пользователь успешно удалён!" print(message + "\n") # логирование functions.logging('{} Удалён (ID): {}'.format(message, uid), 'Отсутствует', 'Успешное удаление пользователя с чёрного листа') else: print("\n - Пользователь с данным ID не найден!\n") time.sleep(3) def get_id_from_console(): """Получение ID пользователя с консоли, который будет удалён """ try: got_id = int(input("\nВведите ID пользователя, которого хотите удалить: ")) if len(str(got_id)) == 9: return got_id else: print("\n - ID должен состоять из 9 чисел") return None except ValueError: print("\n - ID должен состоять только из чисел") while True: try: blacklist = functions.load_data(self.BLACKLIST) except FileNotFoundError as error: message = "\n - Файл не найден!" print(message + "\n") functions.logging(message, error) time.sleep(3) else: user_id = get_id_from_console() if user_id: # удаление пользователя remove_user(user_id, blacklist) # обновление чёрного списка self.__registration('w', self.BLACKLIST, blacklist) break
def __init__(self, df = None, file_id = "", strategy = "momentum_trading"): if df is None: self.df = f.load_data() else: self.df = df self.file = file_id self.df_rt = f.make_returns(self.df) self.df_lrt = f.make_log_returns(self.df) self.df_lrt_30ma = f.get_moving_average(self.df_lrt) self.indices = self.df_lrt.index self.n = len(self.df_lrt) self.tradecosts = 0.001 self.strategy = strategy self.assets = self.df.columns self.endowment = np.random.choice(self.assets, 5, replace = False) self.startperiod = 31 self.cur_date_ind = self.startperiod self.start_date = self.indices[self.cur_date_ind] self.current_date = self.start_date self.cur_return = 0 self.baseline_return = 0 self.tradefreq = 14 self.cash = 0 self.cash_baseline = 0 self.finish = False self.endowment = f.get_worst_performers(self.df_lrt_30ma, self.current_date) self.cash -= np.sum(self.df.loc[self.current_date, self.endowment] * (1 + self.tradecosts)) self.cash_baseline -= np.sum(self.df.loc[self.current_date, :]) * (1 + self.tradecosts) ## current value when cashing out self.cur_value = self.cash + np.sum(self.df.loc[self.current_date, self.endowment]) * (1 - self.tradecosts) self.cur_value_baseline = self.cash_baseline + np.sum(self.df.loc[self.current_date, :]) * (1 - self.tradecosts) self.overall_return = 1 self.overall_return_base = 1 self.results = [] self.threshold = None
def main_definition(): """Определение управляющего бота, регистрации, автоответчика""" try: configs = functions.load_data('data/config-bot.json') bot_token, my_id = configs['TOKEN'], configs['my_ID'] except FileNotFoundError as error: message = "\n - Файл с конфигурациями для бота не найден! Зарегестрируйте данные!" print(message + "\n") functions.logging(message, error) functions.do_command() else: bot = TeleBot(bot_token) bot.remove_webhook() registration = Register() answering_bot = AnsweringBot() if not os.path.exists(registration.LOGS): functions.creating_file(registration.LOGS) return bot, registration, answering_bot, my_id
import psycopg2 import seaborn as sns from sklearn.feature_extraction.text import CountVectorizer sklearn.feature_extraction import text ## TODO: get rid of: import common import functions as f matplotlib.style.use('ggplot') ## TODO: fix unicode here. df = f.load_data() # ## Examining and cleaning data # Extract features # TODO: remove stopwords before vectorizing, because the stop words don't capture bigrams. ## this is for # In[14]: ## this model, with 40 topics, is not bad. m = lda.LDA(n_topics=40, random_state=0, n_iter=200)
#print 'no data willbe plotted...' plotdata=dd elif (dd=='yes') or (args.VAL==[]): #print 'plot everything...' plotdata='yes' else: sys.exit("Error (-plotdata): Only 'yes' or 'no' values are admisible.") ####################### ### MAIN ############## ####################### sys.stdout.write("\a") #loading data points ('N' points for each one of the 'DIM' CVs) N=file_lines(args.INPUT) DIM=file_cols(args.INPUT) P1=load_data(args.INPUT,N,DIM) dK1=[] dK2=[] conv_all=[] # estimate the initial string (P2) of size Min P2 = string_ini(P1,DIM,args.K) Pini=string_ini(P1,DIM,args.K) PiniT=zip(*Pini) # maximun distances of the data to the images of the string maxdistances=maxvec(P1,P2) # Estimate the mean of the voronoid cells P3, fail, free_energy, allpoints, closeP, closeI = voroid_mean(P1,P2,DIM,maxdistances,0)
def __init__(self, nb_epochs, initial_lr): self.epochs = nb_epochs self.initial_lr = initial_lr def __call__(self, epoch_idx): if epoch_idx < self.epochs * 0.25: return self.initial_lr elif epoch_idx < self.epochs * 0.50: return self.initial_lr * 0.2 elif epoch_idx < self.epochs * 0.75: return self.initial_lr * 0.04 return self.initial_lr * 0.008 # Load Base image, gender, age = ft.load_data("serializer/MATimdb64.mat") x_data = image y_data_g = np_utils.to_categorical(gender, 2) y_data_a = np_utils.to_categorical(age, 101) # Fatores importantes: # optimizers, largura da rede, profundidade da rede, losses, val_split, # model WidesResNet (WRN) dupla saida(age,gender) model = WideResNet(64, depth=16, k=8)() #model.summary() #optimizers model.compile(SGD(lr=0.1, momentum=0.9, nesterov=True), loss=['categorical_crossentropy', 'categorical_crossentropy'],
from functions import get_best_wide, load_results, aggregate_results, load_data, resample_ohlc, hma_calc_old import math pair = 'TOMOBTC' strat = 'hma_strat' timescale = '1h' train = 2000 test = 50 train_string = f'{train}-{test}' params = 'lengths5-501-2' metric = 'sqn' print('- Loading data') price, vol = load_data(pair) print('- Resampling data') price, vol = resample_ohlc(price, vol, timescale) print(f'len(price): {len(price)}') print('- Loading results') df_dict = load_results(strat, pair, timescale, train_string, params) print('- Running get_best') best = get_best_wide(metric, df_dict, train, test) print('Running hma_calc') hma_25 = hma_calc_old(price, 25) print('Running hma_calc') hma_327 = hma_calc_old(price, 327) nan_count = 0 for q in range(len(hma_25)):
def SM_test(summaryMeasure, k, data, label, data_test, label_test, batch_size, is_mmens=False): train_split_k = train_split[k] val_split_k = val_split[k] #reset the model before new cv model = CNN_model() model.to(device) # Loss and optimizer criterion = nn.BCEWithLogitsLoss() optimizer = optim.SGD(model.parameters(), momentum=0.9, lr=0.001, weight_decay=1e-3) # load data train_split_k = train_split[k] testData = load_data( split='test', train_split=train_split_k, val_split=val_split_k, summaryMeasure=summaryMeasure, data=data, label=label, # need train data for mean and sd normalization data_test=data_test, label_test=label_test) test_loader = DataLoader(dataset=testData, batch_size=batch_size, shuffle=True) # set and load best model model = CNN_model() model.load_state_dict( torch.load(MODEL_STORE_PATH + '/' + summaryMeasure + '_BEST_model' + '_CV' + str(k + 1) + '.pt')) model.to(device) # START TRAINING FOR THIS CV # TEST EVALUATION model.eval() total_ep = 0.0 correct_ep = 0.0 loss_ep = 0.0 current_ep_acc = 0.0 current_ep_loss = 0.0 total_step_v = len(test_loader) # F1 calc F1_labels = [] F1_pred = [] for i, (images, labels ) in enumerate(test_loader): #TEST THE MODEL ON THE VALIDATION if device.type == "cuda": images = images.to(device) labels = labels.to(device) labels = labels.reshape(len(labels), 1).type(torch.cuda.FloatTensor) outputs_v = model(images) # the forward uses the entire batch together predicted = outputs_v.data > 0.0 #define True if >0.5 and False if <0.5 # collect true labels and predicted for metrix calc if i == 0: F1_labels = labels.int().cpu().numpy() F1_pred = predicted.int().cpu().numpy() else: F1_labels = np.concatenate((F1_labels, labels.int().cpu().numpy())) F1_pred = np.concatenate((F1_pred, predicted.int().cpu().numpy())) loss_v = criterion(outputs_v, labels) total_v = labels.size( 0) # get it in case the last batch has different number of sample correct_v = (predicted == labels ).sum().item() # sum the correct answers for this batch #acc_list_v.append(correct_v / total_v) # n of correct / n of sample in this batch total_ep += total_v # sum all the samples. it must end up being the tot training set correct_ep += correct_v # sum together the right answers in entire training set loss_ep += (loss_v.item() * len(labels)) current_ep_acc = (correct_ep / total_ep) * 100 current_ep_loss = loss_ep / total_ep acc = accuracy_score(F1_labels, F1_pred) bal_acc = balanced_accuracy_score(F1_labels, F1_pred) F1_Score = f1_score(F1_labels, F1_pred, average='weighted') #, zero_division=1) tn, fp, fn, tp = confusion_matrix(F1_labels, F1_pred).ravel() print('CV {}, sumMeasure: {} Test Accuracy of the model is: {}, F1: {}%'. format(k + 1, summaryMeasure, current_ep_acc, F1_Score)) if is_mmens == True: return F1_labels.reshape(-1), F1_pred.reshape(-1) else: return bal_acc, f1_score
def SM_train_val_kfoldCV(summaryMeasure, data, label, batch_size, num_epochs, n_split): # CROSSVALIDATION LOOP for k in np.arange(n_split): train_split_k = train_split[k] val_split_k = val_split[k] #reset the model before new cv model = CNN_model() model.to(device) # Loss and optimizer criterion = nn.BCEWithLogitsLoss() optimizer = optim.SGD(model.parameters(), momentum=0.9, lr=0.001, weight_decay=1e-3) # load data trainData = load_data(split='train', train_split=train_split_k, val_split=val_split_k, summaryMeasure=summaryMeasure, data=data, label=label) valData = load_data(split='val', train_split=train_split_k, val_split=val_split_k, summaryMeasure=summaryMeasure, data=data, label=label) train_loader = DataLoader(dataset=trainData, batch_size=batch_size, shuffle=True) val_loader = DataLoader(dataset=valData, batch_size=batch_size, shuffle=True) # START TRAINING FOR THIS CV # collect loss and acc of each epoch epoch_loss_train = [] epoch_acc_train = [] epoch_loss_val = [] epoch_balacc_val = [] epoch_F1_Score = [] best_acc = None # TRAIN THE MODEL for epoch in range(num_epochs): total_ep = 0.0 correct_ep = 0.0 loss_ep = 0.0 model.train() for i, (images, labels) in enumerate(train_loader): if device.type == "cuda": images = images.to(device) labels = labels.to(device) labels = labels.reshape(len(labels), 1).type(torch.cuda.FloatTensor) # Run the forward pass outputs = model(images) loss = criterion(outputs, labels) # Backprop and perform optimisation optimizer.zero_grad() loss.backward() optimizer.step() # Track the accuracy total = labels.size(0) predicted = outputs.data > 0.0 correct = (predicted == labels).sum().item() total_ep += total correct_ep += correct loss_ep += (loss.item() * len(labels)) epoch_acc_train.append((correct_ep / total_ep)) epoch_loss_train.append(loss_ep / total_ep) # Test the model on validation data model.eval() total_ep = 0.0 correct_ep = 0.0 loss_ep = 0.0 # F1 calc F1_labels = [] F1_pred = [] for i, (images, labels) in enumerate(val_loader): if device.type == "cuda": images = images.to(device) labels = labels.to(device) labels = labels.reshape(len(labels), 1).type(torch.cuda.FloatTensor) outputs_v = model( images) # the forward uses the entire batch together predicted = outputs_v.data > 0.0 #define True if >0.5 and False if <0.5 # collect true labels and predicted for metrix calc if i == 0: F1_labels = labels.int().cpu().numpy() F1_pred = predicted.int().cpu().numpy() else: F1_labels = np.concatenate( (F1_labels, labels.int().cpu().numpy())) F1_pred = np.concatenate( (F1_pred, predicted.int().cpu().numpy())) loss_v = criterion(outputs_v, labels) total_v = labels.size(0) correct_v = (predicted == labels).sum().item() total_ep += total_v correct_ep += correct_v loss_ep += (loss_v.item() * len(labels)) # calculate metrices of this epoch current_ep_loss = loss_ep / total_ep current_ep_acc = (correct_ep / total_ep) acc = accuracy_score(F1_labels, F1_pred) balacc = balanced_accuracy_score(F1_labels, F1_pred) F1_Score = f1_score(F1_labels, F1_pred, average='weighted') tn, fp, fn, tp = confusion_matrix(F1_labels, F1_pred).ravel() if not best_acc or best_acc < current_ep_acc: best_acc = current_ep_acc torch.save( model.state_dict(), MODEL_STORE_PATH + '/' + summaryMeasure + '_BEST_model' + '_CV' + str(k + 1) + '.pt') # collect matrixes of all the epochs epoch_loss_val.append((loss_ep / total_ep)) epoch_balacc_val.append(balacc) print('{}, CV_{}, best accuracy = {}'.format(summaryMeasure, k + 1, acc))
# path to data that has been cropped into smaller same-sized chucks cropped_ground_truth_path_train = '/run/media/henryp/HenryHDD/DataSets/CMU/Formatted/Train/Cropped_data/sliced_' cropped_ground_truth_path_test = '/run/media/henryp/HenryHDD/DataSets/CMU/Formatted/Test/Cropped_data/' if run_on == 'GPU': device = torch.device('cuda:0') else: device = torch.device('cpu') print('============') print('Training on: ' + str(device)) print('============') training_partition, training_set_size = load_data( ground_truth_dir=cropped_ground_truth_path_train, type='train') training_set = DataSet(list_IDS=training_partition['train'], data_dir=cropped_ground_truth_path_train, clip_length=64) training_generator = data.DataLoader(training_set, **params) testing_partition, testing_set_size = load_data( ground_truth_dir=cropped_ground_truth_path_test, type='test') testing_set = DataSet(list_IDS=testing_partition['test'], data_dir=cropped_ground_truth_path_test, clip_length=64) testing_generator = data.DataLoader(testing_set, **params)
help='Turn GPU mode on or off, default set to "off".') results = parser.parse_args() data_dir = results.data_directory save_dir = results.save_directory learning_rate = results.l_rate dropout_rate = results.dropout_rate hidden_unit_count = results.hidden_units epochs = results.num_epochs gpu_mode = results.gpu arch = results.pretrained_model # Load and preprocess data train_loader, test_loader, validate_loader, train_data, test_data, validate_data = load_data( data_dir) # Load pretrained model pre_train_model = results.pretrained_model model = getattr(models, pre_train_model)(pretrained=True) # Build and attach new classifier input_unit_count = model.classifier[0].in_features build_classifier(model, input_unit_count, hidden_unit_count, dropout_rate) # Using a NLLLoss as output is LogSoftmax criterion = nn.NLLLoss() # Using Adam optimiser algorithm - uses concept of momentum to add fractions # to previous gradient descents to minimize loss function optimizer = optim.Adam(model.classifier.parameters(), learning_rate)
# constants W = 20 f = 1 def usage(): print "Usage:\n%s [cross_val|simulation]" % sys.argv[0] if len(sys.argv) < 2: usage() if sys.argv[1] == 'cross_val': CV_LEN = 10 total_df = load_data(ALL_DAYS[:W + CV_LEN], ignore_auctions=True, correct_zero_volumes=True, num_minutes_interval=1) lambdas = [np.inf] for b in range(1, 10): rolling_simulator(total_df, lambdas, W, analyze_day, volume_model_meta_params={ 'num_factors': f, 'bandwidth': b }) total_df['DynamicSolinf_b_%d' % b] = total_df.DynamicSolinf
return parser #-------------------------------- _p = _make_parser() __doc__ += _p.format_help() ###################################################### if __name__ == '__main__': args = _p.parse_args() ####################################### ############ CHECK_PCURVE ################ ####################################### #File with the pcurv estate (output from pcurve.py) ## loading pcurve state N, DIM, Min, Mout, smooth, Niter, Ps, Psout, converg, free_energy, allpoints, closeP, closeI, closePP, closeII = loadpcurve(args.file1) P1=load_data(args.file2,N,DIM) print '#######################################################' print '############# pcurve run parameters ##################' print '#######################################################' print ' ' print 'N (Size of the CV vectors) = ',N print 'DIM (# of CVs) = ',DIM print 'Min (#of points on the string) = ',Min print 'Mout (# of final reparametrized points) = ',Mout print 'smooth (strength of the smoothing [0-1]) = ',smooth print 'Niter (# of iterations) = ',Niter print ' ' print '#######################################################' if args.choice==0: PPP=Ps
def __removing_from_user_list(self): """Удаление пользователя со списка друзей""" def find_key_via_value(uid, got_list): """Поиск ключа с помощью значения, для получения пользователя""" if type(uid) == int: if uid in got_list.values(): i = 0 for value in got_list.values(): if value == uid: return list(got_list.keys())[i] else: i += 1 else: return None else: return uid def get_user_from_console(): """Получение данных (ID или Имя) пользователя, который будет удалён со списка друзей""" got_user = input("\nВедите ID или имя пользователя, которого хотите удалить: ") try: got_user = int(got_user) if len(str(got_user)) == 9: return got_user else: print("\n - ID должен состоять из 9 чисел") return None except ValueError: return got_user def remove_user(user_id, users_list): person = find_key_via_value(user_id, users_list) if not person: print("\n - Пользователь с данным ID не найден!") else: if person.capitalize() in users_list.keys(): del users_list[person.capitalize()] # уведомление message = "\n - Пользователь успешно удалён!" print(message + "\n") # логирование functions.logging('{} Удалён: {}'.format(message, person.capitalize()), 'Отсутствует', 'Успешное удаление пользователя со списка друзей') else: print("\n - Пользователь с данным Именем не найден!") time.sleep(3) while True: try: user_list = functions.load_data(self.USERS) except FileNotFoundError as error: message = "\n - Файл не найден" print(message + "\n") # логирование functions.logging(message, error) time.sleep(3) else: user = get_user_from_console() if user: # удаление пользователя remove_user(user, user_list) # обновление списка друзей self.__registration('w', self.USERS, user_list) break
import functions as f import pandas as pd import numpy as np from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt import seaborn as sns from pylab import rcParams from sklearn.model_selection import train_test_split from keras.models import load_model import tensorflow as tf rcParams['figure.figsize'] = 12, 6 sns.set(style='whitegrid', palette='muted', font_scale=1.5) path = "dados\justica_eleitoral.json" dataLoad= f.load_data(path) encoded_seqs = f.prepare_inputs(dataLoad) autoencoder = load_model('dados\model_seqs2.h5') # ### Carregando novamente a base de dados com as anomalias scaler = MinMaxScaler() scaled_seqs = scaler.fit_transform(encoded_seqs) # fazer a predição com base na rede treinada predicted = autoencoder.predict(scaled_seqs) # MSE em termo de erro mse = np.mean(np.power(scaled_seqs - predicted, 2), axis=1) #Data Frame com MSE
st.markdown(intro_markdown, unsafe_allow_html=True) st.markdown("---") # Sidebar inputs st.sidebar.header('k-means clustering') st.sidebar.write( 'Select a date range and the number of clusters, then click Run to see a preview of the clustered data' ) start_date = st.sidebar.date_input('Start date', date(2018, 1, 1)) end_date = st.sidebar.date_input('End date', date.today()) slider_input = st.sidebar.slider('Number of clusters (k)', min_value=1, max_value=10) # Load cleaned data runs = load_data() # k-means clustering if st.sidebar.button('Run'): output = clustering(runs, start_date, end_date, slider_input) cluster_counts = output[0] st.sidebar.write('Clusters') st.sidebar.dataframe(cluster_counts) st.write('Preview') bucket_data = output[1] st.dataframe(bucket_data.head()) st.sidebar.markdown(filedownload(bucket_data), unsafe_allow_html=True) st.sidebar.markdown("---")
if gpu_mode: print('GPU mode is selected') if torch.cuda.is_available() is False: print('please check the hardware. No GPU is detected') while input("Do you want to continue? [y/n]") == "n": exit() else: print('Program will train on CPU .. will take longer time') while input("Do you want to continue running on CPU mode? [y/n]") == "n": exit() print('... dont switch off computer .. training..') start = time() # working on data .. loading processing.. converting it into tensor etc.. trainloader, testloader, validloader, train_data, test_data, valid_data = load_data( data_dir) # loading a pretrained model pre_tr_model = results.pretrained_model model = getattr(models, pre_tr_model)(pretrained=True) # building a new classifier and replacing it with old classifier input_units = model.classifier[0].in_features build_classifier(model, input_units, hidden_units, dropout) # criterion.. NLLoss selected since we provided logsoftmax for classifier criterion = nn.NLLLoss() # optimizer optimizer = optim.Adam(model.classifier.parameters(), learning_rate) # train model
from functions import visualization_cluster from functions import load_data from sklearn.cluster import DBSCAN from sklearn.manifold import Isomap # load data _, times, _, _, duration = load_data() # convert feature times and duration into ms duration = [d / 1e6 for d in duration] times = [[t / 1e6 for t in sample] for sample in times] # remove 0.14 and 4.22 are most likely to be measurment errors for _ in range(2): index = duration.index(min(duration)) del times[index] del duration[index] model = DBSCAN(eps=25, min_samples=100, n_jobs=-1, algorithm='ball_tree') # visualization with Isomap viz_model = Isomap(n_neighbors=15, n_components=2, n_jobs=-1) cluster = model.fit_predict(times) visualization_cluster(times, cluster, duration, viz_model, 25000, "features_duration_isomap")
#%% import pandas as pd import numpy as np import fbprophet as prop import functions import matplotlib.pyplot as plt import os import csv import glob import datetime import joblib import time #%% #get our data df_train, df_test = functions.load_data() #%% #create the group by object groups = df_train.groupby(['location', 'payment_type']) forecasts = pd.DataFrame() print('processing ' + str(len(groups)) + ' partitions ') #%% s = time.time() for group_name, g in groups: location = str(g['location'].unique()) payment_type = str(g['payment_type'].unique())
dest="hidden_units", default=256, type=int) parser.add_argument('--dropout', dest="dropout", default=0.2) parser.add_argument('--learning_rate', dest="learning_rate", default=0.001) parser.add_argument('--gpu', dest="gpu", default=True, type=bool) parser.add_argument('--epochs', dest="epochs", default=2, type=int) parser.add_argument('--print_every', dest="print_every", default=10, type=int) parser.add_argument('--save_dir', dest="save_dir", default="./checkpoint.pth", type=str) parsed = parser.parse_args() data_dir = parsed.data_dir arch = parsed.arch hidden_units = parsed.hidden_units dropout = parsed.dropout learning_rate = parsed.learning_rate gpu = parsed.gpu epochs = parsed.epochs print_every = parsed.print_every save_dir = parsed.save_dir trainloader, validloader, class_to_idx = functions.load_data(data_dir) model, criterion, optimizer = functions.setup(arch, hidden_units, dropout, learning_rate, gpu) functions.train_network(model, criterion, optimizer, trainloader, validloader, epochs, print_every, gpu) functions.save_checkpoint(save_dir, arch, hidden_units, dropout, learning_rate, gpu, model, optimizer, class_to_idx)
result['Sigma'], result['S_orig'], result['U'] = \ self._computeSigma() else: result['Sigma'] = self._computeSigma() return result if __name__ == "__main__": __TEST_STATIC = True from constants import * from functions import load_data import matplotlib.pyplot as plt total_df = load_data(ALL_DAYS[0:5], ignore_auctions=True, correct_zero_volumes=True, num_minutes_interval=1) symbol = 'MMM' sample_day = total_df[(total_df.Day == '20120924') & (total_df.Symbol == symbol)] fitter = VolumeEstimatorStatic(test=True) model_fit_parameters = fitter.fit(total_df) M_t = model_fit_parameters['M_t'] # plot plt.plot([0.] + list( np.cumsum(sample_day.Volume.values) / float(sample_day.Volume.sum())), label='market') #plt.plot(model_fit_parameters['inverse_solution'], label='inverse_solution')
from numba import prange #parallise loop from generator import batch_generator_SRCNN from functions import load_data, preprocess_data, cPSNR_callback, compute_steps K.clear_session() from tensorflow.compat.v1 import ConfigProto from tensorflow.compat.v1 import InteractiveSession config = ConfigProto() config.gpu_options.allow_growth = True session = InteractiveSession(config=config) from sklearn.model_selection import train_test_split from model import FSRCNN, FSRCNN_, SRCNN, SRCNNex, SRCNNv2, SRVGG16, FSRCNNv2, SRCNNv3, SRResnet from model import custom_loss, PSNR, MSE # load data data_test = load_data("data/test.txt") datas = load_data("data/train.txt") data_train, data_val = train_test_split(datas, test_size=0.1, shuffle=True, random_state=42) ## preprocess data k = 5 scale = 3 resize = True with_clearance = False type_clearance = "sum" version = 4 version_val = 1 if version != 4 else 4
from functions import load_data, train, evaluate, plot_result from keras.models import Sequential from keras.layers import Dense, Dropout, LeakyReLU (x_train, y_train), (x_test, y_test) = load_data() model = Sequential() model.add(Dense(784, activation='relu', input_shape=x_train.shape[1:])) model.add(Dense(128)) model.add(LeakyReLU(alpha=0.01)) model.add(Dense(64)) model.add(LeakyReLU(alpha=0.01)) model.add(Dropout(rate=0.25)) model.add(Dense(128)) model.add(LeakyReLU(alpha=0.01)) model.add(Dense(64)) model.add(LeakyReLU(alpha=0.01)) model.add(Dense(10, activation='softmax')) model.compile( loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'] ) history = train(model, x_train, y_train) plot_result(history) evaluate(model, x_test, y_test)
class_num = 102 epochs = args.epochs steps = 0 train_loss = 0 print_every = 30 data_dir = Path(args.data_dir) train_dir = str(data_dir / 'train') valid_dir = str(data_dir / 'valid') test_dir = str(data_dir / 'test') save_dir = str(Path(args.save_dir) / args.chpt_fn) # load data trainloader, testloader, validloader, train_data = functions.load_data( train_dir, valid_dir, test_dir) # load the model from torchvision model = getattr(models, arch)(pretrained=True) # Freeze parameters so we don't backprop through them for param in model.parameters(): param.requires_grad = False # Define our new classifier classifier = nn.Sequential(nn.Linear(25088, hidden_units), nn.Dropout(p=dropout_p), nn.ReLU(), nn.Linear(hidden_units, class_num), nn.LogSoftmax(dim=1)) model.classifier = classifier
NUM_CLIENTS = 4 NUM_EPOCHS = 100 BATCH_SIZE = 32 SHUFFLE_BUFFER = 500 NUM_AVERAGE_ROUND = 10 # Check the environment warnings.simplefilter('ignore') np.random.seed(0) if six.PY3: tff.framework.set_default_executor(tff.framework.create_local_executor()) tff.federated_computation( lambda: 'The tensorflow federated environment is correctly setup!')() # Load the data emnist_train, emnist_test = load_data(path) # Generate sample batch example_dataset = emnist_train.create_tf_dataset_for_client( emnist_train.client_ids[1]) example_element = iter(example_dataset).next() preprocessed_example_dataset = preprocess(example_dataset, NUM_EPOCHS, SHUFFLE_BUFFER, BATCH_SIZE) sample_batch = tf.nest.map_structure(lambda x: x.numpy(), iter(preprocessed_example_dataset).next()) # Create federated data for each client sample_clients = emnist_train.client_ids[0:NUM_CLIENTS] federated_train_data = make_federated_data(emnist_train, sample_clients, NUM_EPOCHS, SHUFFLE_BUFFER, BATCH_SIZE)
import torch from model import Net from functions import load_data, train_model, test_model, print_prediction lr = 0.001 if __name__ == '__main__': train, validation = load_data() cuda = torch.cuda.is_available() device = torch.device("cuda" if cuda else "cpu") model = Net().to(device) optimizer = torch.optim.Adam(model.parameters(), lr=lr) # train the model train_model(train, optimizer, model, device) # test the model test_model(validation, model, device) print_prediction(model, device)