F = np.load('point_s1_07-14.npz') point_pos = F['pos'] point_s1 = 3600*F['s1'] point_time = F['time'] F.close() ground = ground2 ross_lon = np.mean([-106.040772,-106.040763]) ross_lat = np.mean([37.780315,37.780312]) schmale_lon = np.mean([-106.0422978,-106.0422984]) schmale_lat = np.mean([37.78155488 ,37.7815583]) #(ross, schmale) paired_flights = [(4,4),(5,5)] ground_m = f.lonlat2m(proj_center_lon,proj_center_lat,ground[0],ground[1]) ross_pos_m = f.lonlat2m(proj_center_lon,proj_center_lat,ross_lon,ross_lat) schmale_pos_m = f.lonlat2m(proj_center_lon,proj_center_lat,schmale_lon,schmale_lat) dx = ross_pos_m[0] - schmale_pos_m[0] dy = schmale_pos_m[1] - ross_pos_m[1] s1=[] plt_sec=[] for i, pair in enumerate(paired_flights): plt_sec_temp = [] s1_temp = [] ross_data = pd.read_csv('Ross{:d}_DroneMetData.txt'.format(pair[0]), delim_whitespace=True,header=1,names=['date','time','wind_speed','wind_dir','temp']) seconds = [] for t in range(ross_data.shape[0]): hrs_in_sec = int(ross_data['time'][t][0:2])*3600
lon = np.mean(schmale_lon + ross_lon + [ground[0]]) lat = np.mean(schmale_lat + ross_lat + [ground[1]]) plt.scatter(rossx, rossy, color='cyan') plt.scatter(schmalex, schmaley, color='blue') plt.scatter(ground[0], ground[1], color='brown') plt.scatter(ground[0], schmaley, color='red') plt.scatter(lon, lat, color='magenta') import sys sys.exit() s1 = [] plt_sec = [] for i, pair in enumerate(paired_flights): plt_sec_temp = [] s1_temp = [] ross_pos_km = f.lonlat2m(ground[0], ground[1], ross_lon[i], ross_lat[i]) schmale_pos_km = f.lonlat2m(ground[0], ground[1], schmale_lon[i], schmale_lat[i]) ground_km = [0, 0] dx = ross_pos_km[0] - schmale_pos_km[0] dy = schmale_pos_km[1] - ross_pos_km[1] #print('dx = '+str(dx),'dy = '+str(dy)) ross_data = pd.read_csv( 'Ross{:d}_DroneMetData.txt'.format(pair[0]), delim_whitespace=True, header=1, names=['date', 'time', 'wind_speed', 'wind_dir', 'temp']) seconds = [] for t in range(ross_data.shape[0]): hrs_in_sec = int(ross_data['time'][t][0:2]) * 3600