Ejemplo n.º 1
0
def get_Hamiltonian(options_dict):
    """
    Function that gets the hamiltonian from a file specified in the options
    dictionary and returns it as a function of electric and magnetic fields
    """
    H_fname = options_dict["H_fname"]
    run_dir = options_dict["run_dir"]
    H = make_hamiltonian(run_dir + H_fname)

    return H
Ejemplo n.º 2
0
def simulate_SPB(
    R_t=None,  #Position of molecule as function of time in XYZ coordinate system
    T=None,  #Total time for which molecule is simulated
    E_R=None,
    B_R=None,  #Spatial profiles of the static electric and magnetic fields
    microwave_fields=None,  #List of microwave fields for the simulation
    initial_states=None,  #Initial states for the system (can simulate multiple initial states with little additional cost)
    final_state=None,  #Desired final state after the state preparation
    N_steps=int(1e4),  #Number of timesteps for time-evolution
    H_path=None,  #Path to Hamiltonian if not the default
    verbose=False,  #Whether or not need to print a bunch of output
    plots=False  #Whether or not to save plots
):
    """
    Function that simulates state preparation B in CeNTREX.

    The structure of the cod is as follows:
    0. Define the position of the molecule as a function of time. Position is defined in
       the capitalized coordinate system(XYZ where Z is along the beamline). Helps with
       defining time-dependence of e.g. microwave intensities and electric and magnetic fields.
    
    1. Define electric and magnetic fields as a function of time. This is done based on 
       spatial profiles of the EM-fields. The coordinate system for the direction of the
       the fields is different from the coordinate system used for defining the spatial
       profile:
        - For defining spatial profile use XYZ (Z is along beamline)
        - For defining direction of fields use xyz where z is along the electric field
          in the Main Interaction region
       For electric fields should use V/cm and for B-fields G.

    2. Define slowly time-varying Hamiltonian. This is the Hamiltonian due to the internal
       dynamics of the molecule and the external DC electric and magnetic fields
       (maybe split into internal Hamiltonian and EM-field Hamiltonian?)

    3. Define the microwave Hamiltonian. Simply the couplings due to the microwaves.
       Rotating wave approximation is applied and the rotating frame is used.

    4. Time-evolve the system by using matrix exponentiation for solving Schroedinger eqn.

    5. Make plots etc. if needed
    """
    ### 0. Position as function of time
    #Check if position as function of time was provided, otherwise use a default trajectory
    if R_t is None:

        def molecule_position(t, r0, v):
            """
            Functions that returns position of molecule at a given time for given initial position and velocity.
            inputs:
            t = time in seconds
            r0 = position of molecule at t = 0 in meters
            v = velocity of molecule in meters per second
            
            returns:
            r = position of molecule in metres
            """
            r = r0 + v * t

            return r

        #Define the position of the molecule as a function of time
        r0 = np.array((0, 0, -100e-3))
        v = np.array((0, 0, 200))
        R_t = lambda t: molecule_position(t, r0, v)

        #Define the total time for which the molecule is simulated
        z0 = r0[2]
        vz = v[2]
        T = np.abs(2 * z0 / vz)

    ### 1. Electric and magnetic fields as function of time
    #Here we determine the E- and B-fields as function of time based on provided spatial
    #profiles of the fields

    #Electric field:
    if E_R is not None:
        E_t = lambda t: E_R(R_t(t))

    #If spatial profile is not provided, assume a uniform 50 V/cm along z
    else:
        E_t = lambda t: np.array((0, 0, 50.))

    #Magnetic field:
    if B_R is not None:
        B_t = lambda t: B_R(R_t(t))

    #If spatial profile is not provided assume uniform 0.001 G along z
    else:
        B_t = lambda t: np.array((0, 0, 0.001))

    ### 2. Slowly time-varying Hamiltonian
    #Make list of quantum numbers that defines the basis for the matrices
    QN = make_QN(0, 3, 1 / 2, 1 / 2)
    dim = len(QN)

    #Get H_0 from file (H_0 should be in rad/s)
    if H_path is None:
        H_0_EB = make_hamiltonian(
            "./hamiltonians/TlF_X_state_hamiltonian0to3_2020_03_03.py")
    else:
        H_0_EB = make_hamiltonian(H_path)

    #Calculate the field free Hamiltonian
    H_0 = H_0_EB(np.array((0, 0, 0)), np.array((0, 0, 0)))

    #Calculate part of the Hamiltonian that is due to electromagnetic fields
    H_EB_t = lambda t: H_0_EB(E_t(t), B_t(t)) - H_0

    #Check that H_0 is hermitian
    H_test = H_0 + H_EB_t(T / 2)
    is_herm = np.allclose(H_test, np.conj(H_test.T))
    if not is_herm:
        print("H_0 is non-hermitian!")

    ### 3. Microwave Hamiltonians
    #Generate the part of the Hamiltonian that describes the effect of the microwave
    #field(s)
    if microwave_fields is not None:
        counter = 0
        #Containers for microwave coupling Hamiltonians and the microwave frequencies
        microwave_couplings = []
        omegas = []
        D_mu = np.zeros(H_0.shape)
        for microwave_field in microwave_fields:
            if verbose:
                counter += 1
                print("\nMicrowave {:}:".format(counter))
            #Find out where the peak intensity of the field is located
            Z_peak = microwave_field.z0
            R_peak = np.array((0, 0, Z_peak))

            #Determine the Hamiltonian at z0
            H_peak = H_0_EB(E_R(R_peak), B_R(R_peak))

            #Find the exact ground and excited states for the field at z_peak
            microwave_field.find_closest_eigenstates(H_peak, QN)

            #Calculate angular part of matrix element for main transition
            ME_main = microwave_field.calculate_ME_main(
                pol_vec=microwave_field.p_t(
                    0))  #Angular part of ME for main transition

            #Find the coupling matrices due to the microwave
            H_list = microwave_field.generate_couplings(QN)
            H_list = [H / ME_main for H in H_list]
            Hu_list = [np.triu(H) for H in H_list]
            Hl_list = [np.tril(H) for H in H_list]

            #Find some necessary parameters and then define the coupling matrix as a function of time
            Omega_t = microwave_field.find_Omega_t(
                R_t)  #Time dependence of Rabi rate
            p_t = microwave_field.p_t  #Time dependence of polarization of field
            omega = np.abs(microwave_field.calculate_frequency(
                H_peak, QN))  #Calculate frequency of transition
            omegas.append(omega)
            D_mu += microwave_field.generate_D(
                np.sum(omegas), H_peak,
                QN)  #Matrix that shifts energies for rotating frame

            #Define the coupling matrix as function of time
            def H_mu_t_func(Hu_list, Hl_list, p_t, Omega_t, t):
                return (
                    1 / 2 * Omega_t(t) *
                    (Hu_list[0] * p_t(t)[0] + Hu_list[1] * p_t(t)[1] +
                     Hu_list[2] * p_t(t)[2] + Hl_list[0] * p_t(t)[0].conj() +
                     Hl_list[1] * p_t(t)[1].conj() +
                     Hl_list[2] * p_t(t)[2].conj()))

            H_mu_t = partial(H_mu_t_func, Hu_list, Hl_list, p_t, Omega_t)
            microwave_couplings.append(H_mu_t)

            #Print output for checks
            if verbose:
                print("ME_main = {:.3E}".format(ME_main))
                print("muW frequency: {:.9E} GHz".format(omega /
                                                         (2 * np.pi * 1e9)))
                print("ground_main:")
                ground_main = microwave_field.ground_main
                ground_main.print_state()
                print("excited_main:")
                excited_main = microwave_field.excited_main
                excited_main.print_state()
                ME = excited_main.state_vector(QN).conj().T @ H_mu_t(
                    T / 2) @ ground_main.state_vector(QN)
                print("Omega_T/2 = {:.3E}".format(ME / (2 * np.pi)))

        #Generate function that gives couplings due to all microwaves
        def H_mu_tot_t(t):
            H_mu_tot = microwave_couplings[0](t)
            if len(microwave_couplings) > 1:
                for H_mu_t in microwave_couplings[1:]:
                    H_mu_tot = H_mu_tot + H_mu_t(t)
            return H_mu_tot

    else:
        H_mu_tot_t = lambda t: np.zeros(H_0.shape)

    if verbose:
        time = timeit.timeit("H_mu_tot_t(T/2)", number=10,
                             globals=locals()) / 10
        print("Time to generate H_mu_tot_t: {:.3e} s".format(time))
        H_test = H_mu_tot_t(T / 2)
        non_zero = H_test[np.abs(H_test) > 0].shape[0]
        print("Non-zero elements at T/2: {}".format(non_zero))
        print("Rotating frame energy shifts:")
        print(np.diag(D_mu) / (2 * np.pi * 1e9))
        print(np.max(np.abs(H_mu_tot_t(T / 2))) / (2 * np.pi))

    ### 4. Time-evolution
    #Now time-evolve the system by repeatedly applying the time-evolution operator with small
    # timestep

    #Make array of times at which time-evolution is performed
    t_array = np.linspace(0, T, N_steps)

    #Calculate timestep
    dt = T / N_steps

    #Set the state vector to the initial state
    H_t0 = H_0 + H_EB_t(0)
    psis = np.zeros((len(initial_states), H_t0.shape[0]), dtype=complex)
    ini_index = np.zeros(len(initial_states))
    for i, initial_state in enumerate(initial_states):
        initial_state = find_closest_state(H_t0, initial_state, QN)
        psis[i, :] = initial_state.state_vector(QN)
        #Also figure out the state indices that correspond to the initial states
        ini_index[i] = find_state_idx_from_state(H_t0, initial_state, QN)

    #Set up containers to store results
    state_probabilities = np.zeros(
        (len(initial_states), len(t_array), H_t0.shape[0]))
    state_energies = np.zeros((len(t_array), H_t0.shape[0]))
    psi_t = np.zeros((len(initial_states), len(t_array), H_t0.shape[0]),
                     dtype=complex)

    #Initialize the reference matrix of eigenvectors
    E_ref, V_ref = np.linalg.eigh(H_t0)
    E_ref_0 = E_ref
    V_ref_0 = V_ref

    #Loop over timesteps to evolve system in time
    for i, t in enumerate(tqdm(t_array)):
        #Calculate the necessary Hamiltonians at this time
        H_t = H_0 + H_EB_t(t)
        H_mu = H_mu_tot_t(t)

        #Diagonalize H_t and transform to that basis
        D_t, V_t, info_t = zheevd(H_t)
        if info_t != 0:
            print("zheevd didn't work for H_0")
            D_t, V_t = np.linalg.eigh(H_t)

        #Make intermediate hamiltonian by transforming H to the basis where H_0 is diagonal
        H_I = V_t.conj().T @ H_t @ V_t

        #Sort the eigenvalues so they are in ascending order
        index = np.argsort(D_t)
        D_t = D_t[index]
        V_t = V_t[:, index]

        #Find the microwave coupling matrix in the new basis:
        H_mu = V_t.conj().T @ H_mu @ V_t

        #Make total intermediate hamiltonian
        H_I = H_I + H_mu

        #Transform H_I to the rotating basis
        H_R = H_I + D_mu

        #Diagonalize H_R
        D_R, V_R, info_R = zheevd(H_R)
        if info_R != 0:
            print("zheevd didn't work for H_R")
            D_R, V_R = np.linalg.eigh(H_R)

        #Reorder the eigenstates so that a given index corresponds to the same "adiabatic" state
        energies, evecs = D_t, V_t
        energies, evecs = reorder_evecs(evecs, energies, V_ref)

        #Propagate state vector in time
        propagator = V_t @ V_R @ np.diag(np.exp(
            -1j * D_R * dt)) @ V_R.conj().T @ V_t.conj().T
        for j in range(0, len(initial_states)):
            psis[j, :] = propagator @ psis[j, :]

            #Calculate the overlap of the state vector with all of the eigenvectors of the Hamiltonian
            overlaps = np.dot(np.conj(psis[j, :]).T, evecs)
            probabilities = overlaps * np.conj(overlaps)

            #Store the probabilities, energies and the state vector
            state_probabilities[j, i, :] = np.real(probabilities)
            psi_t[j, i, :] = psis[j, :].T

        state_energies[i, :] = energies
        V_ref = evecs

    #Find the exact form of the desired final state and calculate overlap with state vector
    final_state = find_closest_state(H_0 + H_EB_t(T), final_state, QN)
    final_state_vec = final_state.state_vector(QN)

    if len(initial_states) == 1:
        overlap = final_state_vec.conj().T @ psis[0, :]
        probability = np.abs(overlap)**2

        if verbose:
            print(
                "Probability to end up in desired final state: {:.3f}".format(
                    probability))
            print("desired final state|fin> = ")
            final_state.print_state()

    return t_array, state_probabilities, V_ref, QN
Ejemplo n.º 3
0
def simulate_RAP(r0=np.array((0, 0, -100e-3)),
                 v=np.array((0, 0, 200)),
                 ring_z1=-71.4375e-3,
                 ring_z2=85.725e-3,
                 ring_V1=4e3,
                 ring_V2=3.6e2,
                 B_earth=np.array((0, 0, 0)),
                 Omega1=2 * np.pi * 200e3,
                 Omega2=2 * np.pi * 200e3,
                 Delta=0,
                 delta=0,
                 z0_mu1=0.0,
                 z0_mu2=0.03,
                 N_steps=1e5):
    """
    Function that runs the rapid adiabatic passage simulation for the given 
    parameters
    
    inputs:
    r0 = initial position of molecule [m]
    v = velocity of molecule (assumed to be constant) [m/s]
    ring_z1 = position of first ring electrode [m]
    ring_z2 = position of second ring electrode [m]
    ring_V1 = voltage on ring 1 [V]
    ring_V2 = voltage on ring 2 [V]
    B_earth = magnetic field of earth [G]
    Omega1 = Rabi rate for microwave 1 [rad/s]
    Omega2 = Rabi rate for microwave 2 [rad/s]
    Delta = 1-photon detuning [rad/s]
    delta = 2-photon detuning [rad/s]
    z0_mu1 = z-position of microwave 1 [m]
    z0_mu2 = z-position of microwave 2 [m]
    
    returns:
    probability = probability of being in the target final state
    
    """

    #Define the position of the molecule as a fucntion of time
    r0 = np.array((0, 0, -100e-3))
    v = np.array((0, 0, 200))
    r_t = lambda t: molecule_position(t, r0, v)

    #Define the total time for which the molecule is simulated
    z0 = r0[2]
    vz = v[2]
    T = np.abs(2 * z0 / vz)

    #Define electric field as function of position
    E_r = lambda r: (E_field_ring(r, z0=ring_z1, V=ring_V1) + E_field_ring(
        r, z0=ring_z2, V=ring_V2))

    #Next define electric field as function of time
    E_t = lambda t: E_r(r_t(t))

    #Define the magnetic field
    B_r = lambda r: B_earth
    B_t = lambda t: B_r(r_t(t))

    #Make list of quantum numbers that defines the basis for the matrices
    QN = make_QN(0, 3, 1 / 2, 1 / 2)

    #Get H_0 from file (H_0 should be in rad/s)
    H_0_EB = make_hamiltonian("../utility/TlF_X_state_hamiltonian0to3.py")

    #Make H_0 as function of time
    H_0_t = lambda t: H_0_EB(E_t(t), B_t(t))
    dim = H_0_t(0).shape[0]

    #Fetch the initial state from file
    with open("../utility/initial_state0to3.pickle", 'rb') as f:
        initial_state_approx = pickle.load(f)

    #Fetch the intermediate state from file
    with open("../utility/intermediate_state0to3.pickle", "rb") as f:
        intermediate_state_approx = pickle.load(f)

    #Fetch the final state from file
    with open("../utility/final_state0to3.pickle", 'rb') as f:
        final_state_approx = pickle.load(f)

    #Find the eigenstate of the Hamiltonian that most closely corresponds to initial_state at T=0. This will be used as the
    #actual initial state
    initial_state = find_closest_state(H_0_t(0), initial_state_approx, QN)
    initial_state_vec = initial_state.state_vector(QN)

    #Find the eigenstate of the Hamiltonian that most closely corresponds to final_state_approx at t=T. This will be used to
    #determine what fraction of the molecules end up in the correct final state
    final_state = find_closest_state(H_0_t(T), final_state_approx, QN)
    final_state_vec = final_state.state_vector(QN)

    intermediate_state = find_closest_state(H_0_t(0),
                                            intermediate_state_approx, QN)
    intermediate_state_vec = intermediate_state.state_vector(QN)

    #Find the energies of ini and int so that suitable microwave frequency for mu1 can be calculated
    H_z0 = H_0_EB(E_r(np.array((0, 0, z0_mu1))), B_r(np.array((0, 0, z0_mu1))))
    D_z0, V_z0 = np.linalg.eigh(H_z0)

    ini_index = find_state_idx_from_state(H_z0, initial_state_approx, QN)
    int_index = find_state_idx_from_state(H_z0, intermediate_state_approx, QN)
    fin_index = find_state_idx_from_state(H_z0, final_state_approx, QN)

    #Note: the energies are in 2*pi*[Hz]
    E_ini = D_z0[ini_index]
    E_int = D_z0[int_index]
    omega_mu1 = E_int - E_ini

    #Find the energies of int and fin so that suitable microwave frequency for mu2 can be calculated
    H_z0 = H_0_EB(E_r(np.array((0, 0, z0_mu2))), B_r(np.array((0, 0, z0_mu2))))
    D_z0, V_z0 = np.linalg.eigh(H_z0)

    ini_index = find_state_idx_from_state(H_z0, initial_state_approx, QN)
    int_index = find_state_idx_from_state(H_z0, intermediate_state_approx, QN)
    fin_index = find_state_idx_from_state(H_z0, final_state_approx, QN)

    #Note: the energies are in 2*pi*[Hz]
    E_int = D_z0[int_index]
    E_fin = D_z0[fin_index]
    omega_mu2 = E_fin - E_int

    #Define dipole moment of TlF
    D_TlF = 2 * np.pi * 4.2282 * 0.393430307 * 5.291772e-9 / 4.135667e-15  # [rad/s/(V/cm)]

    #Calculate the approximate power required for each set of microwaves to get a specified peak Rabi rate for the transitions
    ME1 = np.abs(
        calculate_microwave_ED_matrix_element_mixed_state_uncoupled(
            initial_state_approx, intermediate_state_approx, reduced=False))

    ME2 = np.abs(
        calculate_microwave_ED_matrix_element_mixed_state_uncoupled(
            intermediate_state_approx, final_state_approx, reduced=False))

    P1 = calculate_power_needed(Omega1, ME1)
    P2 = calculate_power_needed(Omega2, ME2)

    #Define the microwave electric field as a function of time
    E_mu1_t = lambda t: microwave_field(
        r_t(t), power=P1, z0=z0_mu1, fwhm=1.1 * 0.0254)
    E_mu2_t = lambda t: microwave_field(
        r_t(t), power=P2, z0=z0_mu2, fwhm=1.1 * 0.0254)

    #Define matrix for microwaves coupling J = 0 to 1
    J1_mu1 = 0
    J2_mu1 = 1
    omega_mu1 = omega_mu1 + Delta
    H1 = make_H_mu(J1_mu1, J2_mu1, omega_mu1, QN)
    H_mu1 = lambda t: H1(0) * D_TlF * E_mu1_t(t)

    #Define matrix for microwaves coupling J = 1 to 2
    J1_mu2 = 1
    J2_mu2 = 2
    omega_mu2 = omega_mu2 + delta - Delta
    H2 = make_H_mu(J1_mu2, J2_mu2, omega_mu2, QN)
    H_mu2 = lambda t: H2(0) * D_TlF * E_mu2_t(t)

    #Make the matrices used to transform to rotating frame
    U1, D1 = make_transform_matrix(J1_mu1, J2_mu1, omega_mu1, QN)
    U2, D2 = make_transform_matrix(J1_mu2, J2_mu2, omega_mu2 + omega_mu1, QN)

    U = lambda t: U1(t) @ U2(t)
    D = lambda t: D1 + D2

    #Define number of timesteps and make a time-array
    t_array = np.linspace(0, T, N_steps)

    #Calculate timestep
    dt = T / N_steps

    #Set system to its initial state
    psi = initial_state_vec

    #Loop over timesteps to evolve system in time
    for i, t in enumerate(t_array):
        #Calculate the necessary Hamiltonians at this time
        H_0 = H_0_t(t)
        H_mu1_i = H_mu1(t)
        H_mu2_i = H_mu2(t)

        #Diagonalize H_0 and transform to that basis
        D_0, V_0, info_0 = zheevd(H_0)
        if info_0 != 0:
            print("zheevd didn't work for H_0")
            D_0, V_0 = np.linalg.eigh(H_0)
        #Make intermediate hamiltonian by transforming H to the basis where H_0 is diagonal
        H_I = V_0.conj().T @ H_0 @ V_0

        #Sort the eigenvalues so they are in ascending order
        index = np.argsort(D_0)
        D_0 = D_0[index]
        V_0 = V_0[:, index]

        #Find the microwave coupling matrix:
        H_mu1_i = V_0.conj().T @ H_mu1_i @ V_0 * np.exp(1j * omega_mu1 * t)
        H_mu1_i = block_diag(H_mu1_i[0:16, 0:16], np.zeros(
            (dim - 16, dim - 16)))
        H_mu1_i = np.triu(H_mu1_i) + np.triu(
            H_mu1_i).conj().T  #+ np.diag(np.diag(H1))

        H_mu2_i = V_0.conj().T @ H_mu2_i @ V_0 * np.exp(1j * omega_mu2 * t)
        H_mu2_i = block_diag(np.zeros((4, 4)), H_mu2_i[4:36, 4:36],
                             np.zeros((dim - 36, dim - 36)))
        H_mu2_i = np.triu(H_mu2_i) + np.triu(
            H_mu2_i).conj().T  #+ np.diag(np.diag(H1))

        #Make total hamiltonian
        H_I = H_I + H_mu1_i + H_mu2_i

        #Find transformation matrices for rotating basis
        U_t = U(t)
        D_t = D(t)

        #Transform H_I to the rotating basis
        H_R = U_t.conj().T @ H_I @ U_t + D_t

        #Diagonalize H_R
        D_R, V_R, info_R = zheevd(H_R)
        if info_R != 0:
            print("zheevd didn't work for H_R")
            D_R, V_R = np.linalg.eigh(H_R)

        #Propagate state vector in time
        psi = V_0 @ V_R @ np.diag(np.exp(
            -1j * D_R * dt)) @ V_R.conj().T @ V_0.conj().T @ psi

    psi_fin = vector_to_state(psi, QN)

    #Calculate overlap between final target state and psi
    overlap = final_state_vec.conj().T @ U(T) @ psi
    probability = np.abs(overlap)**2

    return probability
Ejemplo n.º 4
0
def OBE_integrator(
        r0=np.array((0., 0., 0.)),
        r1=np.array((0, 0, 3e-2)),
        v=np.array(
            (0, 0, 200)
        ),  #Parameters for defining position of molecule as function of time
        X_states=None,
        B_states=None,  #States that are needed for simulation
        microwave_fields=None,
        laser_fields=None,  #Lists of MicrowaveFields and LaserFields 
        Gamma=2 * np.pi * 1.6e6,  #Natural linewidth of the excited state
        states_pop=None,
        pops=None,  #States that are populated and their populations
        Nsteps=int(5e3),
        dt=None,
        dt_max=1e-5,  #Number of timesteps, or alternatively size of timesteps
        method='exp',  #Method to use for time-integration
        verbose=True,  #Whether or not to print outputs for debugging
):
    """
    Function that integrates optical Bloch equations for TlF in Centrex.

    The structure of the code is as follows:
    0. Define position of molecule as function of time. Makes it easier to
       convert spatial dependence of e.g. laser/microwave intensity to a
       time dependence.

    1. Define the internal Hamiltonian of the molecule. The Hamiltonian
       for the X- and B-states of TlF is fetched from file and diagonalized.
       The eigenstates of the Hamiltonians are used as the basis in the rest
       of the calculation. The size of the basis is reduced by keeping only 
       states that couple to one of the time-dependent fields, or which can
       be reached via spontaneous decay from the excited state.

        1.1 Define X-state Hamiltonian and find the diagonal basis
        1.2 Define B-state Hamiltonian and find the diagonal basis

    2. Microwave couplings. Construct Hamiltonian for microwave couplings between different 
       rotational states within X based on the list of microwave fields that is provided.

    3. Optical couplings. Construct the Hamiltonian for laser couplings between X and B. Can
       have multiple laser fields provided in a list of LaserField objects.
    
    4. Generate the total Hamiltonian that contains the couplings due to the fields, and the
       internal molecular Hamiltonian

    5. Generate collapse operators that describe spontaneous decay

    6. Generate initial density matrix

    7. Transform to Liouville space if using exponentiation method

    8. Time-evolution

    inputs:
    r0 = initial position of molecule [m]
    r1 = final positon of molecule [m]
    v = velocity of molecule [m/s]
    X_states = list of states in X-state of TlF used in the simulation (list of State objects)
    B_states = list of states in B-state of TlF used in the simulation (list of State objects)
    laser_fields = list of OpticalField objects (see OBE_classes.py)
    microwave_fields = list of MicrowaveField objects (see OBE_classes.py)
    states_pops = states that are initially populated
    pops = initial populations of states_pops. If none, Boltzmann distribution assumed

    outputs:
    t_array = array of times at which we have datapoints [s]
    pop_results = populations in each state at the times stored in t_array

    """

    ### 0. Define molecular position as function of time ###
    def molecule_position(t, r0, v):
        """
        Function that returns position of molecule at a given time for given initial position and 
        velocity.
        
        inputs:
        t = time in seconds
        r0 = position of molecule at t = 0 in meters
        v = velocity of molecule in meters per second
        
        returns:
        r = position of molecule in metres
        """
        r = r0 + v * t

        return r

    #Define a lambda function that gives position as function of time
    r_t = lambda t: molecule_position(t, r0, v)

    #Calculate total time for simulation [s]
    z0 = r0[2]
    z1 = r1[2]
    vz = v[2]
    T = np.abs((z1 - z0) / vz)

    # If want printed output, print it
    if verbose:
        print("Total simulation time is {:.3E} s".format(T))

    ### 1. Internal Hamiltonian
    ## 1.1 X-state of TlF

    #Load Hamiltonian from file
    H_X_uc = make_hamiltonian(
        "./utilities/TlF_X_state_hamiltonian_J0to4.pickle")

    #Hamiltonian on file is in uncoupled angular momentum basis. Transform it to coupled.
    #Load transform matrix
    with open("./utilities/UC_to_C_j0to4.pickle", "rb") as f:
        S_trans = pickle.load(f)

    #Transform matrix
    E = np.array((0, 0, 0))
    B = np.array(
        (0, 0, 0.001)
    )  #Very small magnetic field is used to ensure mF is a good quantum number
    H_X = S_trans.conj().T @ H_X_uc(E, B) @ S_trans

    #Define basis to which the Hamiltonian was transformed
    Jmin = 0
    Jmax = 4
    I_F = 1 / 2
    I_Tl = 1 / 2
    QN_X = [
        CoupledBasisState(F,
                          mF,
                          F1,
                          J,
                          I_F,
                          I_Tl,
                          electronic_state='X',
                          P=(-1)**J,
                          Omega=0) for J in ni_range(Jmin, Jmax + 1)
        for F1 in ni_range(np.abs(J - I_F), J + I_F + 1)
        for F in ni_range(np.abs(F1 - I_Tl), F1 + I_Tl + 1)
        for mF in ni_range(-F, F + 1)
    ]

    #Diagonalize the Hamiltonian (also making sure V is as close as identity matrix as possible
    # in terms of ordering of states)
    D, V = np.linalg.eigh(H_X)
    V_ref_X = np.eye(V.shape[0])
    D, V = reorder_evecs(V, D, V_ref_X)
    H_X_diag = V.conj().T @ H_X @ V

    #Define new basis based on eigenstates of H_X:
    QN_X_diag = matrix_to_states(V, QN_X)

    #Sometimes only a subset of states is needed for the simulation. Determine the X-states
    #that are needed here.
    if X_states is None:
        ground_states = QN_X_diag
    else:
        ground_states = find_exact_states(X_states,
                                          H_X_diag,
                                          QN_X_diag,
                                          V_ref=V_ref_X)

    #Find the Hamiltonian in the reduced basis
    H_X_red = reduced_basis_hamiltonian(QN_X_diag, H_X_diag, ground_states)

    #Set small off diagonal terms to zero
    H_X_red[np.abs(H_X_red) < 0.1] = 0

    ## 1.2 B-state of TlF

    #Load Hamiltonian from file
    H_B = make_hamiltonian_B(
        "./utilities/B_hamiltonians_symbolic_coupled_P_1to3.pickle")

    #Define the basis that the Hamiltonian is in
    Jmin = 1
    Jmax = 3
    I_F = 1 / 2
    I_Tl = 1 / 2
    Ps = [-1, 1]
    QN_B = [
        CoupledBasisState(F,
                          mF,
                          F1,
                          J,
                          I_F,
                          I_Tl,
                          P=P,
                          Omega=1,
                          electronic_state='B')
        for J in ni_range(Jmin, Jmax + 1)
        for F1 in ni_range(np.abs(J - I_F), J + I_F + 1)
        for F in ni_range(np.abs(F1 - I_Tl), F1 + I_Tl + 1)
        for mF in ni_range(-F, F + 1) for P in Ps
    ]

    #Diagonalize the Hamiltonian
    D, V = np.linalg.eigh(H_B)
    V_ref_B = np.eye(H_B.shape[0])
    D, V = reorder_evecs(V, D, V_ref_B)
    H_B_diag = V.conj().T @ H_B @ V

    #Define new basis based on eigenstates of H_B
    QN_B_diag = matrix_to_states(V, QN_B)

    #Sometimes only a subset of states is needed for the simulation. Determine the X-states
    #that are needed here.
    if B_states is None:
        excited_states = QN_B_diag
    else:
        excited_states = find_exact_states(B_states,
                                           H_B_diag,
                                           QN_B_diag,
                                           V_ref=V_ref_B)

    #Find the Hamiltonian in the reduced basis
    H_B_red = reduced_basis_hamiltonian(QN_B_diag, H_B_diag, excited_states)

    #Set small off diagonal terms to zero
    H_B_red[np.abs(H_B_red) < 0.1] = 0

    ## 1.3 Define total internal Hamiltonian
    H_int = scipy.linalg.block_diag(H_X_red, H_B_red)
    V_ref_int = np.eye(H_int.shape[0])

    #Define Hamiltonian in the rotating frame (transformation not applied yet)
    H_rot = H_int

    #Define QN for the total Hamiltonian that includes both X and B
    QN = ground_states + excited_states

    if verbose:
        print("Diagonal of H_int:")
        print(np.diag(H_int) / (2 * np.pi))

    ### 2. Couplings due to microwaves
    #If there are microwave fields, loop over them. Otherwise skip this section.
    if microwave_fields is not None:
        microwave_couplings = []
        omegas = []
        for microwave_field in microwave_fields:
            #Find the exact ground and excited states for the field
            microwave_field.find_closest_eigenstates(H_rot, QN, V_ref_int)

            #Calculate angular part of matrix element for main transition
            ME_main = microwave_field.calculate_ME_main(
            )  #Angular part of ME for main transition

            #Find the coupling matrices due to the laser
            H_list = microwave_field.generate_couplings(QN)
            H_list = [H / ME_main for H in H_list]
            Hu_list = [np.triu(H) for H in H_list]
            Hl_list = [np.tril(H) for H in H_list]

            #Find some necessary parameters and then define the coupling matrix as a function of time
            Omega_t = microwave_field.find_Omega_t(
                r_t)  #Time dependence of Rabi rate
            p_t = microwave_field.p_t  #Time dependence of polarization of field
            omega = microwave_field.calculate_frequency(
                H_rot, QN)  #Calculate frequency of transition
            D_mu = microwave_field.generate_D(
                omega, H_rot, QN,
                V_ref_int)  #Matrix that shifts energies for rotating frame
            H_rot += D_mu

            #Define the coupling matrix as function of time
            def H_mu_t_func(Hu_list, Hl_list, p_t, Omega_t, t):
                return (
                    Omega_t(t) *
                    (Hu_list[0] * p_t(t)[0] + Hu_list[1] * p_t(t)[1] +
                     Hu_list[2] * p_t(t)[2] + Hl_list[0] * p_t(t)[0].conj() +
                     Hl_list[1] * p_t(t)[1].conj() +
                     Hl_list[2] * p_t(t)[2].conj()))

            H_mu_t = partial(H_mu_t_func, Hu_list, Hl_list, p_t, Omega_t)
            microwave_couplings.append(H_mu_t)

            #Print output for checks
            if verbose:
                print("ME_main = {:.3E}".format(ME_main))
                i_e = QN.index(microwave_field.excited_main)
                i_g = QN.index(microwave_field.ground_main)
                print(H_mu_t(T / 2)[i_e, i_g] / (2 * np.pi * 1e6))
                print(Omega_t(T / 2))

        #Generate function that gives couplings due to all microwaves
        def H_mu_tot_t(t):
            H_mu_tot = microwave_couplings[0](t)
            if len(microwave_couplings) > 1:
                for H_mu_t in microwave_couplings[1:]:
                    H_mu_tot = H_mu_tot + H_mu_t(t)
            return H_mu_tot

        if verbose:
            with open("H_mu_tot.pickle", 'wb+') as f:
                pickle.dump(H_mu_tot_t(T / 2), f)

        #Shift energies in H_int in accordance with the rotating frame
        #H_rot = H_rot + D_mu

    else:
        H_mu_tot_t = lambda t: np.zeros(H_rot.shape)

    if verbose:
        time = timeit.timeit("H_mu_tot_t(T/2)", number=10,
                             globals=locals()) / 10
        print("Time to generate H_mu_tot_t: {:.3e} s".format(time))
        H_test = H_mu_tot_t(T / 2)
        non_zero = H_test[np.abs(H_test) > 0].shape[0]
        print("Non-zero elements at T/2: {}".format(non_zero))

    ### 3. Optical couplings due to laser
    #If there are laser fields, loop over them. Otherwise skip this section
    if laser_fields is not None:
        optical_couplings = []
        optical_Ls = []
        D_laser = np.zeros(H_rot.shape)
        for laser_field in laser_fields:
            #Find the exact ground and excited states for the field
            laser_field.find_closest_eigenstates(H_rot, QN, V_ref_int)

            #Calculate angular part of matrix element for main transition
            ME_main = laser_field.calculate_ME_main(
            )  #Angular part of ME for main transition

            #Find the coupling matrices due to the laser
            H_list = laser_field.generate_couplings(QN)
            H_list = [H / ME_main for H in H_list]
            Hu_list = [np.triu(H) for H in H_list]
            Hl_list = [np.tril(H) for H in H_list]

            #Find some necessary parameters and then define the coupling matrix as a function of time
            p_t = laser_field.p_t  #Time dependence of polarization of field (includes phase modulation)
            Omega_t = laser_field.find_Omega_t(
                r_t)  #Time dependence of Rabi rate
            D_laser += laser_field.generate_D(
                H_rot, QN)  #Matrix that shifts energies for rotating frame
            H_rot = H_rot + laser_field.generate_D(H_rot, QN)

            #Define the optical coupling Hamiltonian as function of time
            def H_oc_t_func(Hu_list, Hl_list, p_t, Omega_t, t):
                return (
                    Omega_t(t) *
                    (Hu_list[0] * p_t(t)[0] + Hu_list[1] * p_t(t)[1] +
                     Hu_list[2] * p_t(t)[2] + Hl_list[0] * p_t(t)[0].conj() +
                     Hl_list[1] * p_t(t)[1].conj() +
                     Hl_list[2] * p_t(t)[2].conj()))

            H_oc_t = partial(H_oc_t_func, Hu_list, Hl_list, p_t, Omega_t)

            optical_couplings.append(H_oc_t)

            #Print output for checks
            if verbose:
                print("ME_main = {:.3E}".format(ME_main))
                i_e = QN.index(laser_field.excited_main)
                i_g = QN.index(laser_field.ground_main)
                print(H_oc_t(T / 2)[i_e, i_g] / (2 * np.pi * 1e6))
                print(Omega_t(T / 2) / (1e6 * 2 * np.pi))
                print("excited main:")
                laser_field.ground_main.print_state()

        #Functions for total Hamiltonian and Lindbladian due to optical couplings
        def H_oc_tot_t(t):
            H_oc_tot = optical_couplings[0](t)
            if len(optical_couplings) > 1:
                for H_oc_t in optical_couplings[1:]:
                    H_oc_tot = H_oc_tot + H_oc_t(t)
            return H_oc_tot

        #Shift energies in H_rot in accordance with the rotating frame
        #Also shift the energies so that ground_main is at zero energy
        i_g = QN.index(laser_field.ground_main)
        H_rot = H_rot - np.eye(H_rot.shape[0]) * H_rot[i_g, i_g]

    #If no laser fields are defined, set coupling matrix to zeros
    else:
        H_oc_tot_t = lambda t: np.zeros(H_rot.shape)

    if verbose:
        time = timeit.timeit("H_oc_tot_t(T/2)", number=10,
                             globals=locals()) / 10
        print("Time to generate H_oc_tot_t: {:.3e} s".format(time))
        print("Diagonal of H_rot in rotating frame of laser:")
        print(np.diag(H_rot) / (2 * np.pi))
        print("D_laser:")
        print(np.diag(D_laser))
        # with open("H_oc_tot.pickle",'wb+') as f:
        #     pickle.dump(H_oc_tot_t(T/2.3156165),f)

    ### 4. Total Hamiltonian
    #Define the total Hamiltonian (including the oscillating fields) in the rotating frame
    # as a function of time
    H_tot_t = lambda t: H_rot + H_oc_tot_t(t) + H_mu_tot_t(t)

    if verbose:
        time = timeit.timeit("H_tot_t(T/2)", number=10, globals=locals()) / 10
        print("Time to generate H_tot_t: {:.3e} s".format(time))
        print("Diagonal of H_tot_t(T/2) in rotating frame of laser:")
        print(np.diag(H_tot_t(T / 2)) / (2 * np.pi))
        # print("D_laser:")
        # print(np.diag(D_laser))

    ### 5. Collapse operators
    #Here we generate the matrices that describe spontaneous decay from the excited
    #states to the ground states
    C_list = collapse_matrices(QN, ground_states, excited_states, gamma=Gamma)

    #Generate the superoperator that contains spontaneous decay
    #This is constant in time so only generated once
    L_collapse = np.zeros((len(QN)**2, len(QN)**2), dtype=complex)
    for C in tqdm(C_list):
        L_collapse += (generate_superoperator(C,
                                              C.conj().T) - 1 / 2 *
                       (generate_flat_superoperator(C.conj().T @ C) +
                        generate_sharp_superoperator(C.conj().T @ C)))
    #Make the collapse operator into a sparse matrix
    L_collapse = csr_matrix(L_collapse)

    ### 6. Initial populations
    #Find the exact forms of the states that are initially populated
    states_pop = find_exact_states(states_pop, H_rot, QN, V_ref=V_ref_int)

    #If populations in states are not specified, assume Boltzmann distribution
    if pops is None:
        pops = find_boltzmann_pops(states_pop)
        pops = pops / np.sum(pops)

    #Generate initial density matrix
    rho_ini = generate_density_matrix(QN, states_pop, pops)

    if verbose:
        print("Initial population in")
        states_pop[0].print_state()
        print("is {:.5f}".format(pops[0]))

    if method == 'exp':
        ### 7. Transfer to Liouville space
        #We transfer to Liouville space where the density matrix is a vector
        #and time-evolution is found by matrix exponentiation

        #Generate the Lindbladian
        #Define a function that gives the time dependent part of the Liouvillian
        #at time t
        L_t = lambda t: (generate_commutator_superoperator(
            coo_matrix(-1j * H_tot_t(t))) + L_collapse)

        if verbose:
            time = timeit.timeit("L_t(T/2)", number=10, globals=locals()) / 10
            print("Time to generate L_t: {:.3e} s".format(time))
            L_test = L_t(T / 2)
            non_zero = L_test[np.abs(L_test) > 0]

        ### 8. Time-evolution
        #Here we perform the time-evolution of the system

        #Set rho vector to its initial value
        rho_vec = generate_rho_vector(rho_ini)

        #Calculate timestep
        if dt is None:
            dt = T / Nsteps
        else:
            Nsteps = int(T / dt) + 1

        #Generate array of times
        t_array = np.linspace(0, T, Nsteps)

        #Pre-calculate some parameters for the matrix exponentiation
        #Calculate onenorm estimate
        norm = onenormest(L_t(T / 2))

        #Calculate wsp and iwsp
        m = 20  #maximum size of Krylov subspace
        n = rho_vec.shape[0]
        wsp = np.zeros(7 + n * (m + 2) + 5 * (m + 2) * (m + 2),
                       dtype=np.complex128)
        iwsp = np.zeros(m + 2, dtype=np.int32)

        #Array for storing results
        pop_results = np.zeros((len(QN), len(t_array)), dtype=float)
        pop_results[:, 0] = np.real(np.diag(rho_ini))

        #Loop over timesteps
        for i, t_i in enumerate(tqdm(t_array[1:])):
            #Calculate the Lindbladian at this time
            L_sparse = L_t(t_i)

            #Time evolve the density vector
            rho_vec = py_zgexpv(rho_vec,
                                L_sparse,
                                t=dt,
                                anorm=norm,
                                wsp=wsp,
                                iwsp=iwsp,
                                m=m)

            #Convert back to density matrix
            rho = rho_vec.reshape(len(QN), len(QN))

            #Find populations in each state
            pop_results[:, i + 1] = np.real(np.diag(rho))

        # if verbose:
        #     time = timeit.timeit("py_zgexpv(rho_vec, L_sparse, t = dt, anorm = norm, wsp = wsp, iwsp = iwsp,m = m)",
        #                          number = 10, globals = locals())/10
        #     print("Time for exponentiating: {:.3E}".format(time))

    elif method == 'RK45':
        ### 7. Setting up ODE solver

        #Define a function that generates the RHS of the OBEs in vector format
        #Still useful to use Liouville space for the collapse operators since they can be
        #fully precalculated (see rhs_C below)
        def Lindblad_rhs(t, rho_vec):
            dim = int(np.sqrt(len(rho_vec)))
            rho = rho_vec.reshape((dim, dim))
            rhs_H = (-1j * (H_tot_t(t) @ rho - rho @ H_tot_t(t))).flatten()
            rhs_C = L_collapse @ rho_vec
            rhs = rhs_H + rhs_C
            return rhs

        if verbose:
            time = timeit.timeit(
                "rhs_test  = Lindblad_rhs(T/2,rho_ini.flatten())",
                number=10,
                globals=locals()) / 10
            print("Time to generate RHS: {:.3e} s".format(time))

        ### 8. Time-evolution

        #Perform time evolution using IVP solver from scipy
        t_span = (0, T)
        sol = solve_ivp(Lindblad_rhs,
                        t_span,
                        rho_ini.flatten(),
                        dense_output=True,
                        max_step=dt_max,
                        method='RK45')

        #Get t_array and populations from solution object
        t_array = sol.t
        pop_results = np.real(
            np.einsum(
                'jji->ji',
                sol.y.reshape(
                    (rho_ini.shape[0], rho_ini.shape[1], sol.y.shape[1]))))

    else:
        raise NotImplementedError("Time integation method not implemented")

    return t_array, pop_results