def _residual(self, h, channels, strides, keep_prob, is_train): h0 = h h1 = F.conv(F.activation(F.batch_norm(self, 'bn1', h0, is_train)), channels, strides) h1 = F.dropout(h1, keep_prob, is_train) h2 = F.conv(F.activation(F.batch_norm(self, 'bn2', h1, is_train)), channels) if F.volume(h0) == F.volume(h2): h = h0 + h2 else : h4 = F.conv(h0, channels, strides) h = h2 + h4 return h
def _residual(self, h, channels, strides, keep_prob, is_train): h0 = h with tf.variable_scope('residual_first'): h1 = F.conv(F.activation(F.batch_norm(h0, is_train)), channels, strides) h1 = F.dropout(h1, keep_prob, is_train) with tf.variable_scope('residual_second'): h2 = F.conv(F.activation(F.batch_norm(h1, is_train)), channels) if F.volume(h0) == F.volume(h2): h = h0 + h2 else : h4 = F.conv(h0, channels, strides) h = h2 + h4 return h
def _residual(self, h, channels, strides, keep_prob): h0 = h h1 = F.dropout( F.conv(F.activation(F.batch_normalization(h0)), channels, strides), keep_prob) h2 = F.conv(F.activation(F.batch_normalization(h1)), channels) # c.f. http://gitxiv.com/comments/7rffyqcPLirEEsmpX if F.volume(h0) == F.volume(h2): h = h2 + h0 else: h4 = F.conv(h0, channels, strides) h = h2 + h4 return h
def _residual(self, h, channels, strides): h0 = h h1 = F.activation( F.batch_normalization( F.conv(h0, channels, strides, bias_term=False))) h2 = F.batch_normalization(F.conv(h1, channels, bias_term=False)) if F.volume(h0) == F.volume(h2): h = h2 + h0 else: h3 = F.avg_pool(h0) h4 = tf.pad(h3, [[0, 0], [0, 0], [0, 0], [channels / 4, channels / 4]]) h = h2 + h4 return h
def _residual(self, h, channels, strides): h0 = h h1 = F.activation( F.batch_normalization( F.conv(h0, channels, strides, bias_term=False))) h2 = F.batch_normalization(F.conv(h1, channels, bias_term=False)) # c.f. http://gitxiv.com/comments/7rffyqcPLirEEsmpX if F.volume(h0) == F.volume(h2): h = h2 + h0 else: h3 = F.avg_pool(h0) h4 = tf.pad(h3, [[0, 0], [0, 0], [0, 0], [channels / 4, channels / 4]]) h = h2 + h4 return F.activation(h)
def esitmator_function(self, r): total_sum = 0 n = len(self.all_sd) # number of super-droplets for super_droplet in self.all_sd: total_sum += 1 / V * super_droplet.ksi * volume( super_droplet.r) * rho * w( math.log(r) - math.log(super_droplet.r), n) return total_sum