Ejemplo n.º 1
0
def analyzeCDM_motion(rNo, procList):
    """ load data and images """
    procFile = []
    set = 2
    for ii in range(len(rNo)):
        str = '%d.dat' % rNo[ii]
        procFile.append([s for s in procList if str in s])
        str = ''.join(procFile[ii])
        df = pd.read_table(str, usecols=[0, 1, 9, 20])

        if not 'imgs' in locals():
            imgs = fem.getPilatusImgs(df, rNo[ii], set)
        else:
            imgs = imgs + fem.getPilatusImgs(df, rNo[ii], set)
    """ calculate angles for each pixels of each images """
    E = 7
    alpha = 0.5

    pilH = 2.75  # [mm]
    pilV = -47.5  # [mm]

    xdb = 21.6 - 414. * 0.170  # [mm]
    ydb = -58.03 - 188. * 0.17  # [mm]

    d = 74

    img_range = [12, 10]

    delta, gamma, images = fem.getPixelsAngles(imgs, pilH, pilV, xdb, ydb, d,
                                               img_range)

    E = 7
    alpha = 0.5
    N = np.array([-1, -1, 2])
    omega = -63.66
    omega_offset = 0  # offset with respect to the UB matrix

    rot = np.array(df['# top rotation']) - omega_offset

    a = np.array([5.39, 5.40, 7.61])
    aa = np.array([90, 90, 90.07])

    U, B = tldiff.UBmat(a, aa, N)
    """ find center of mass of the peak """
    CDMidx, CDMmaxidx = tlimg.centerOfMass(images)

    idxup = np.ceil(CDMidx)
    idxdown = np.floor(CDMidx)

    CDM_omega = np.interp(CDMidx[0], np.array([idxdown[0], idxup[0]]),
                          np.array([rot[idxdown[0]], rot[idxup[0]]]))
    omegaMax = rot[CDMmaxidx[0]]
    CDM_delta = np.interp(
        CDMidx[0], np.array([idxdown[0], idxup[0]]),
        np.array([delta[idxdown[1], idxdown[2]], delta[idxup[1], idxup[2]]]))
    CDM_gamma = np.interp(
        CDMidx[0], np.array([idxdown[0], idxup[0]]),
        np.array([gamma[idxdown[1], idxdown[2]], gamma[idxup[1], idxup[2]]]))

    CDMhkl, CDMQ = tldiff.hklFromAngles(E, CDM_delta, CDM_gamma, CDM_omega,
                                        alpha, U, B)

    images = np.sum(images, axis=0)

    return images, CDMhkl, CDM_omega, CDM_delta, CDM_gamma, procFile, omegaMax
Ejemplo n.º 2
0
    sys.path.append('Z:/Data1')
    procList = glob.glob('Z:\Data1\*\proc\proc*.dat')
    procFile = []
    dfList = []
    set = 2

    count = 0
    for ii in range(rNo_all.shape[0]):
        for jj in range(rNo_all.shape[1]):
            rNo = rNo_all[ii, jj]
            string = '%d.dat' % rNo
            procFile.append([s for s in procList if string in s])
            string = ''.join(procFile[count])
            temp = pd.read_table(string, usecols=[0, 1, 9, 20, 39])
            dfList.append(temp)
            imgs_temp, uimgs_temp = fem.getPilatusImgs(dfList[count], set)
            imgs_all[ii, :, :, :] = imgs_all[ii, :, :, :] + imgs_temp
            uimgs_all[ii, :, :, :] = uimgs_all[ii, :, :, :] + uimgs_temp
            count += 1
    del (imgs_temp)
    del (uimgs_temp)
    peakPix = [155, 92]  # pixels position of the peak [x,y]
    roi = np.array([[peakPix[0] - 22, peakPix[0] + 22],
                    [peakPix[1] - 20,
                     peakPix[1] + 20]])  # [[xmin,xmax][ymin,ymax]]
    imgs_all = imgs_all[:, :, roi[1][0]:roi[1][1],
                        roi[0][0]:roi[0][1]]  # line = y, column = x
    uimgs_all = uimgs_all[:, :, roi[1][0]:roi[1][1],
                          roi[0][0]:roi[0][1]]  # line = y, column = x

#d = 74 # distance sample - detector [mm]
Ejemplo n.º 3
0
if not 'data_pilgate' in locals():
    data_pilgate = dict()
    data_pilgate_ave = dict()
    count = 0
    for ii in range(len(rNo_pilgate)):
        print('pilgate ii = %d' % ii)
        data_pilgate[ii] = pd.DataFrame()
    
        for jj in range(rNo_pilgate[ii].size):
            rNo = rNo_pilgate[ii][jj]
            string = '%d.dat' %rNo
            procFile_pilgate.append( [s for s in procList if string in s] )
            string = ''.join(procFile_pilgate[count])
            temp = pd.read_table(string,usecols=[0,1,9,18,20])
            imgs_temp, uimgs_temp = fem.getPilatusImgs(temp, set)
    
            int_roi = np.zeros(imgs_temp.shape[0])
            int_bkg = np.zeros(imgs_temp.shape[0])
            total_int = np.zeros(131)
            for kk in range(imgs_temp.shape[0]):
    #            roi = [[0,178],[0,212]] # [[xmin, xmax], [ymin, ymax]]
                roi = [[94-20,94+20],[165-25,165+25]] # [[xmin, xmax], [ymin, ymax]]
                # note: the import routine create an array from the images, which invert the axis
                bkgroi = np.add(roi , [[-30,30],[-30,30]] )
                
                temp_int_roi, temp_int_bkg = imgana.roi_bkgRoi(imgs_temp[kk], roi, bkgroi)
                int_roi[kk] = temp_int_roi
                int_bkg[kk] = temp_int_bkg
                
    #            if kk % 10 == 0: