Ejemplo n.º 1
0
def test_reduce_moment_matching_multivariate():
    int_inputs = [('i', bint(4))]
    real_inputs = [('x', reals(2))]
    inputs = OrderedDict(int_inputs + real_inputs)
    int_inputs = OrderedDict(int_inputs)
    real_inputs = OrderedDict(real_inputs)

    loc = numeric_array([[-10., -1.], [+10., -1.], [+10., +1.], [-10., +1.]])
    precision = zeros(4, 1, 1) + ops.new_eye(loc, (2, ))
    discrete = Tensor(zeros(4), int_inputs)
    gaussian = Gaussian(loc, precision, inputs)
    gaussian -= gaussian.log_normalizer
    joint = discrete + gaussian
    with interpretation(moment_matching):
        actual = joint.reduce(ops.logaddexp, 'i')
    assert_close(actual.reduce(ops.logaddexp), joint.reduce(ops.logaddexp))

    expected_loc = zeros(2)
    expected_covariance = numeric_array([[101., 0.], [0., 2.]])
    expected_precision = _inverse(expected_covariance)
    expected_gaussian = Gaussian(expected_loc, expected_precision, real_inputs)
    expected_gaussian -= expected_gaussian.log_normalizer
    expected_discrete = Tensor(ops.log(numeric_array(4.)))
    expected = expected_discrete + expected_gaussian
    assert_close(actual, expected, atol=1e-5, rtol=None)
Ejemplo n.º 2
0
def test_eager_subs_origin(int_inputs, real_inputs):
    int_inputs = OrderedDict(sorted(int_inputs.items()))
    real_inputs = OrderedDict(sorted(real_inputs.items()))
    inputs = int_inputs.copy()
    inputs.update(real_inputs)
    g = random_gaussian(inputs)

    # Check that Gaussian log density at origin is zero.
    origin = {k: zeros(d.shape) for k, d in real_inputs.items()}
    actual = g(**origin)
    expected_data = zeros(tuple(d.size for d in int_inputs.values()))
    expected = Tensor(expected_data, int_inputs)
    assert_close(actual, expected)
Ejemplo n.º 3
0
def test_block_vector_batched(batch_shape):
    shape = batch_shape + (10, )
    expected = zeros(shape)
    actual = BlockVector(shape)

    expected[..., 1] = randn(batch_shape)
    actual[..., 1] = expected[..., 1]

    expected[..., 3:5] = randn(batch_shape + (2, ))
    actual[..., 3:5] = expected[..., 3:5]

    assert_close(actual.as_tensor(), expected)
Ejemplo n.º 4
0
def test_block_vector():
    shape = (10, )
    expected = zeros(shape)
    actual = BlockVector(shape)

    expected[1] = randn(())
    actual[1] = expected[1]

    expected[3:5] = randn((2, ))
    actual[3:5] = expected[3:5]

    assert_close(actual.as_tensor(), expected)
Ejemplo n.º 5
0
def test_block_matrix(sparse):
    shape = (10, 10)
    expected = zeros(shape)
    actual = BlockMatrix(shape)

    expected[1, 1] = randn(())
    actual[1, 1] = expected[1, 1]

    if not sparse:
        expected[1, 3:5] = randn((2, ))
        actual[1, 3:5] = expected[1, 3:5]

        expected[3:5, 1] = randn((2, ))
        actual[3:5, 1] = expected[3:5, 1]

    expected[3:5, 3:5] = randn((2, 2))
    actual[3:5, 3:5] = expected[3:5, 3:5]

    assert_close(actual.as_tensor(), expected)
Ejemplo n.º 6
0
def test_block_matrix_batched(batch_shape, sparse):
    shape = batch_shape + (10, 10)
    expected = zeros(shape)
    actual = BlockMatrix(shape)

    expected[..., 1, 1] = randn(batch_shape)
    actual[..., 1, 1] = expected[..., 1, 1]

    if not sparse:
        expected[..., 1, 3:5] = randn(batch_shape + (2, ))
        actual[..., 1, 3:5] = expected[..., 1, 3:5]

        expected[..., 3:5, 1] = randn(batch_shape + (2, ))
        actual[..., 3:5, 1] = expected[..., 3:5, 1]

    expected[..., 3:5, 3:5] = randn(batch_shape + (2, 2))
    actual[..., 3:5, 3:5] = expected[..., 3:5, 3:5]

    assert_close(actual.as_tensor(), expected)
Ejemplo n.º 7
0
def test_to_data_error():
    data = zeros((3, 3))
    x = Tensor(data, OrderedDict(i=bint(3)))
    with pytest.raises(ValueError):
        funsor.to_data(x)
Ejemplo n.º 8
0
def test_to_data():
    data = zeros((3, 3))
    x = Tensor(data)
    assert funsor.to_data(x) is data