Ejemplo n.º 1
0
switch_lam = 2
lam = 532e-9 * switch_lam
theta_t = 1.5 * np.pi / 180
gamma_m = 1.40e9 / switch_lam  # molecular signal spectral width
gamma_a = 50e6 / switch_lam  # aerosol signal spectral width
fopd = 0.15 * switch_lam
t_ref = 20
t = 20
p = 1
f = 0.1

h1 = Copper(fopd, theta_t, gamma_m, gamma_a, lam, t, t_ref, p, d_opd_d_t=lam / 5, glass=LITHOSIL_Q)
# print(h1.d1, h1.d2, h1.d3)
# dt = np.linspace(-0.5, 0.5, 25)
dt = np.linspace(-5, 5, 25)
opd = h1.opd_exact_pure(theta_t,
                   h1.generate_n_glass(t + dt),
                   h1.d_glass_thermal_expansion(t + dt),
                   h1.generate_n_air(t + dt),
                   h1.d_air_thermal_expansion(t + dt))
opd_variation = (opd - fopd) / lam

fig, ax = plt.subplots()
ax.plot(dt, opd_variation, color='black')
ax.grid(True)
ax.set_xlabel(r"$\Delta$T ($^\circ$C)")
ax.set_ylabel(r"$\Delta$OPD ($\lambda$)")
ax.set_title("OPD Variation v. Temperature")
ax.text(0.21, 0.00001, r"T($\Delta$T=0) = 20 $^\circ$C")
plt.show()
Ejemplo n.º 2
0
f = 0.1

h1 = Copper(fopd, theta_t, gamma_m, gamma_a, lam, t, t_ref, p)

n_T = 3000
theta_d = 0.5 * np.pi / 180
d_T = np.linspace(-4, 4, n_T)

t_m = np.zeros(n_T)
t_a = np.zeros(n_T)
sdr = np.zeros(n_T)
fsrs = np.zeros(n_T)
opds = np.zeros(n_T)
theta_t_0 = theta_t
for i in range(n_T):
    n1 = h1.generate_n_glass(h1.t + d_T[i])
    d1 = h1.d_glass_thermal_expansion(h1.t + d_T[i])
    print('glass', 2 * (h1.d_glass * h1.n_glass - n1 * d1) / lam)
    n2 = h1.generate_n_air(h1.t + d_T[i])
    d2 = h1.d_air_thermal_expansion(h1.t + d_T[i])
    print('air', 2 * (h1.n_air * h1.d_air - n2 * d2) / lam)
    opd = h1.opd_exact_pure(theta_t, n1, d1, n2, d2)
    opds[i] = opd
    fsrs[i] = h1.fsr(opd)
    t_m[i] = h1.overall_transmittance(theta_d, f, h1.gamma_m, h1.fsr(opd))
    t_a[i] = h1.overall_transmittance(theta_d, f, h1.gamma_a, h1.fsr(opd))
    sdr[i] = t_m[i] / t_a[i]

fig, ax = plt.subplots()
# ax.plot(d_T, t_a, color='black')
ax.plot(d_T, sdr, color='black')