Ejemplo n.º 1
0
def Fmt_test():
    Print_Function()

    e3d = Ga('e1 e2 e3',g=[1,1,1])

    v = e3d.mv('v','vector')
    B = e3d.mv('B','bivector')
    M = e3d.mv('M','mv')

    Fmt(2)

    print '#Global $Fmt = 2$'

    print 'v =',v
    print 'B =',B
    print 'M =',M

    print '#Using $.Fmt()$ Function'

    print 'v.Fmt(3) =',v.Fmt(3)
    print 'B.Fmt(3) =',B.Fmt(3)
    print 'M.Fmt(2) =',M.Fmt(2)
    print 'M.Fmt(1) =',M.Fmt(1)

    print '#Global $Fmt = 1$'

    Fmt(1)

    print 'v =',v
    print 'B =',B
    print 'M =',M

    return
Ejemplo n.º 2
0
def extracting_vectors_from_conformal_2_blade():
    Print_Function()
    print r'B = P1\W P2'

    g = '0 -1 #,'+ \
        '-1 0 #,'+ \
        '# # #'

    c2b = Ga('P1 P2 a',g=g)
    (P1,P2,a) = c2b.mv()

    print 'g_{ij} =',c2b.g

    B = P1^P2
    Bsq = B*B
    print '%B^{2} =',Bsq
    ap = a-(a^B)*B
    print "a' = a-(a^B)*B =",ap

    Ap = ap+ap*B
    Am = ap-ap*B

    print "A+ = a'+a'*B =",Ap
    print "A- = a'-a'*B =",Am

    print '%(A+)^{2} =',Ap*Ap
    print '%(A-)^{2} =',Am*Am

    aB = a|B
    print 'a|B =',aB
    return
Ejemplo n.º 3
0
def derivatives_in_rectangular_coordinates():
    Print_Function()
    X = (x,y,z) = symbols('x y z')
    o3d = Ga('e_x e_y e_z',g=[1,1,1],coords=X)
    (ex,ey,ez) = o3d.mv()
    grad = o3d.grad

    f = o3d.mv('f','scalar',f=True)
    A = o3d.mv('A','vector',f=True)
    B = o3d.mv('B','bivector',f=True)
    C = o3d.mv('C','mv')
    print 'f =',f
    print 'A =',A
    print 'B =',B
    print 'C =',C

    print 'grad*f =',grad*f
    print 'grad|A =',grad|A
    print 'grad*A =',grad*A

    print '-I*(grad^A) =',-o3d.i*(grad^A)
    print 'grad*B =',grad*B
    print 'grad^B =',grad^B
    print 'grad|B =',grad|B
    return
Ejemplo n.º 4
0
def basic_multivector_operations_3D():
    Print_Function()

    g3d = Ga('e*x|y|z')
    (ex,ey,ez) = g3d.mv()

    A = g3d.mv('A','mv')

    A.Fmt(1,'A')
    A.Fmt(2,'A')
    A.Fmt(3,'A')

    A.even().Fmt(1,'%A_{+}')
    A.odd().Fmt(1,'%A_{-}')

    X = g3d.mv('X','vector')
    Y = g3d.mv('Y','vector')

    print 'g_{ij} = ',g3d.g

    X.Fmt(1,'X')
    Y.Fmt(1,'Y')

    (X*Y).Fmt(2,'X*Y')
    (X^Y).Fmt(2,'X^Y')
    (X|Y).Fmt(2,'X|Y')
    return
Ejemplo n.º 5
0
def properties_of_geometric_objects():
    Print_Function()
    global n, nbar
    g = '# # # 0 0,'+ \
        '# # # 0 0,'+ \
        '# # # 0 0,'+ \
        '0 0 0 0 2,'+ \
        '0 0 0 2 0'

    c3d = Ga('p1 p2 p3 n \\bar{n}',g=g)
    (p1,p2,p3,n,nbar) = c3d.mv()

    print 'g_{ij} =',c3d.g

    P1 = F(p1)
    P2 = F(p2)
    P3 = F(p3)

    print '\\text{Extracting direction of line from }L = P1\\W P2\\W n'

    L = P1^P2^n
    delta = (L|n)|nbar
    print '(L|n)|\\bar{n} =',delta

    print '\\text{Extracting plane of circle from }C = P1\\W P2\\W P3'

    C = P1^P2^P3
    delta = ((C^n)|n)|nbar
    print '((C^n)|n)|\\bar{n}=',delta
    print '(p2-p1)^(p3-p1)=',(p2-p1)^(p3-p1)
    return
Ejemplo n.º 6
0
    def test_3_4(self):
        """
        The other contraction.
        """

        Ga.dual_mode("Iinv+")

        R = Ga('e*1|2|3')
        A_blades = [R.mv('A', i, 'grade') for i in range(R.n + 1)]
        B_blades = [R.mv('B', i, 'grade') for i in range(R.n + 1)]

        for A, B in product(A_blades, B_blades):
            self.assertEquals(B > A, ((-1) ** (A.pure_grade() * (B.pure_grade() - 1))) * (A < B))
Ejemplo n.º 7
0
def rounding_numerical_components():
    Print_Function()
    o3d = Ga('e_x e_y e_z',g=[1,1,1])
    (ex,ey,ez) = o3d.mv()

    X = 1.2*ex+2.34*ey+0.555*ez
    Y = 0.333*ex+4*ey+5.3*ez

    print 'X =',X
    print 'Nga(X,2) =',Nga(X,2)
    print 'X*Y =',X*Y
    print 'Nga(X*Y,2) =',Nga(X*Y,2)
    return
Ejemplo n.º 8
0
def main():
    Print_Function()

    (a, b, c) = abc = symbols("a,b,c", real=True)
    (o3d, ea, eb, ec) = Ga.build("e_a e_b e_c", g=[1, 1, 1], coords=abc)
    grad = o3d.grad

    x = symbols("x", real=True)
    A = o3d.lt(
        [
            [x * a * c ** 2, x ** 2 * a * b * c, x ** 2 * a ** 3 * b ** 5],
            [x ** 3 * a ** 2 * b * c, x ** 4 * a * b ** 2 * c ** 5, 5 * x ** 4 * a * b ** 2 * c],
            [x ** 4 * a * b ** 2 * c ** 4, 4 * x ** 4 * a * b ** 2 * c ** 2, 4 * x ** 4 * a ** 5 * b ** 2 * c],
        ]
    )
    print "A =", A

    v = a * ea + b * eb + c * ec

    print "v =", v

    f = v | A(v)

    print r"%f = v\cdot \f{A}{v} =", f

    (grad * f).Fmt(3, r"%\nabla f")

    Av = A(v)

    print r"%\f{A}{v} =", Av

    (grad * Av).Fmt(3, r"%\nabla \f{A}{v}")

    return
Ejemplo n.º 9
0
def derivatives_in_prolate_spheroidal_coordinates():
    #Print_Function()
    a = symbols('a', real=True)
    coords = (xi, eta, phi) = symbols('xi eta phi', real=True)
    (ps3d, er, eth, ephi) = Ga.build('e_xi e_eta e_phi',
                                     X=[
                                         a * sinh(xi) * sin(eta) * cos(phi),
                                         a * sinh(xi) * sin(eta) * sin(phi),
                                         a * cosh(xi) * cos(eta)
                                     ],
                                     coords=coords,
                                     norm=True)
    grad = ps3d.grad

    f = ps3d.mv('f', 'scalar', f=True)
    A = ps3d.mv('A', 'vector', f=True)
    B = ps3d.mv('B', 'bivector', f=True)

    print('f =', f)
    print('A =', A)
    print('B =', B)

    print('grad*f =', grad * f)
    print('grad|A =', grad | A)
    (-ps3d.i * (grad ^ A)).Fmt(3, '-I*(grad^A)')
    (grad ^ B).Fmt(3, 'grad^B')
    return
Ejemplo n.º 10
0
def derivatives_in_spherical_coordinates():
    #Print_Function()
    coords = (r, th, phi) = symbols('r theta phi', real=True)
    (sp3d, er, eth, ephi) = Ga.build('e_r e_theta e_phi',
                                     g=[1, r**2, r**2 * sin(th)**2],
                                     coords=coords)
    grad = sp3d.grad

    f = sp3d.mv('f', 'scalar', f=True)
    A = sp3d.mv('A', 'vector', f=True)
    B = sp3d.mv('B', 'bivector', f=True)

    print('f =', f)
    print('A =', A)
    print('B =', B)

    print('grad*f =', grad * f)
    print('grad|A =', grad | A)
    print('grad\\times A = -I*(grad^A) =', -sp3d.i * (grad ^ A))
    print('%\\nabla^{2}f =', grad | (grad * f))
    print('grad^B =', grad ^ B)
    """
    print '( \\nabla\\W\\nabla )\\bm{e}_{r} =',((grad^grad)*er).trigsimp()
    print '( \\nabla\\W\\nabla )\\bm{e}_{\\theta} =',((grad^grad)*eth).trigsimp()
    print '( \\nabla\\W\\nabla )\\bm{e}_{\\phi} =',((grad^grad)*ephi).trigsimp()
    """

    return
Ejemplo n.º 11
0
def derivatives_in_paraboloidal_coordinates():
    #Print_Function()
    coords = (u, v, phi) = symbols('u v phi', real=True)
    (par3d, er, eth, ephi) = Ga.build(
        'e_u e_v e_phi',
        X=[u * v * cos(phi), u * v * sin(phi), (u**2 - v**2) / 2],
        coords=coords,
        norm=True)
    grad = par3d.grad

    f = par3d.mv('f', 'scalar', f=True)
    A = par3d.mv('A', 'vector', f=True)
    B = par3d.mv('B', 'bivector', f=True)

    print('#Derivatives in Paraboloidal Coordinates')

    print('f =', f)
    print('A =', A)
    print('B =', B)

    print('grad*f =', grad * f)
    print('grad|A =', grad | A)
    (-par3d.i * (grad ^ A)).Fmt(3, 'grad\\times A = -I*(grad^A)')
    print('grad^B =', grad ^ B)

    return
Ejemplo n.º 12
0
def Lorentz_Tranformation_in_Geog_Algebra():
    Print_Function()
    (alpha,beta,gamma) = symbols('alpha beta gamma')
    (x,t,xp,tp) = symbols("x t x' t'",real=True)
    (st2d,g0,g1) = Ga.build('gamma*t|x',g=[1,-1])

    from sympy import sinh,cosh

    R = cosh(alpha/2)+sinh(alpha/2)*(g0^g1)
    X = t*g0+x*g1
    Xp = tp*g0+xp*g1
    print('R =',R)

    print(r"#%t\bm{\gamma_{t}}+x\bm{\gamma_{x}} = t'\bm{\gamma'_{t}}+x'\bm{\gamma'_{x}} = R\lp t'\bm{\gamma_{t}}+x'\bm{\gamma_{x}}\rp R^{\dagger}")

    Xpp = R*Xp*R.rev()
    Xpp = Xpp.collect()
    Xpp = Xpp.trigsimp()
    print(r"%t\bm{\gamma_{t}}+x\bm{\gamma_{x}} =",Xpp)
    Xpp = Xpp.subs({sinh(alpha):gamma*beta,cosh(alpha):gamma})

    print(r'%\f{\sinh}{\alpha} = \gamma\beta')
    print(r'%\f{\cosh}{\alpha} = \gamma')

    print(r"%t\bm{\gamma_{t}}+x\bm{\gamma_{x}} =",Xpp.collect())
    return
Ejemplo n.º 13
0
def basic_multivector_operations_3D():
    #Print_Function()

    (g3d, ex, ey, ez) = Ga.build('e*x|y|z')

    print 'g_{ij} =', g3d.g

    A = g3d.mv('A', 'mv')

    A.Fmt(1, 'A')
    A.Fmt(2, 'A')
    A.Fmt(3, 'A')

    A.even().Fmt(1, '%A_{+}')
    A.odd().Fmt(1, '%A_{-}')

    X = g3d.mv('X', 'vector')
    Y = g3d.mv('Y', 'vector')

    X.Fmt(1, 'X')
    Y.Fmt(1, 'Y')

    (X * Y).Fmt(2, 'X*Y')
    (X ^ Y).Fmt(2, 'X^Y')
    (X | Y).Fmt(2, 'X|Y')
    return
Ejemplo n.º 14
0
def Maxwells_Equations_in_Geom_Calculus():
    Print_Function()
    X = symbols("t x y z", real=True)
    (st4d, g0, g1, g2, g3) = Ga.build("gamma*t|x|y|z", g=[1, -1, -1, -1], coords=X)

    I = st4d.i

    B = st4d.mv("B", "vector", f=True)
    E = st4d.mv("E", "vector", f=True)
    B.set_coef(1, 0, 0)
    E.set_coef(1, 0, 0)
    B *= g0
    E *= g0
    J = st4d.mv("J", "vector", f=True)
    F = E + I * B

    print r"\text{Pseudo Scalar\;\;}I =", I
    print "\\text{Magnetic Field Bi-Vector\\;\\;} B = \\bm{B\\gamma_{t}} =", B
    print "\\text{Electric Field Bi-Vector\\;\\;} E = \\bm{E\\gamma_{t}} =", E
    print "\\text{Electromagnetic Field Bi-Vector\\;\\;} F = E+IB =", F
    print "%\\text{Four Current Density\\;\\;} J =", J
    gradF = st4d.grad * F
    print "#Geom Derivative of Electomagnetic Field Bi-Vector"
    gradF.Fmt(3, "grad*F")

    print "#Maxwell Equations"
    print "grad*F = J"
    print "#Div $E$ and Curl $H$ Equations"
    print (gradF.get_grade(1) - J).Fmt(3, "%\\grade{\\nabla F}_{1} -J = 0")
    print "#Curl $E$ and Div $B$ equations"
    print (gradF.get_grade(3)).Fmt(3, "%\\grade{\\nabla F}_{3} = 0")
    return
Ejemplo n.º 15
0
def derivatives_in_spherical_coordinates():
    #Print_Function()
    coords = (r,th,phi) = symbols('r theta phi', real=True)
    (sp3d,er,eth,ephi) = Ga.build('e_r e_theta e_phi',g=[1,r**2,r**2*sin(th)**2],coords=coords)
    grad = sp3d.grad

    f = sp3d.mv('f','scalar',f=True)
    A = sp3d.mv('A','vector',f=True)
    B = sp3d.mv('B','bivector',f=True)

    print 'f =',f
    print 'A =',A
    print 'B =',B

    print 'grad*f =',grad*f
    print 'grad|A =',grad|A
    print 'grad\\times A = -I*(grad^A) =',-sp3d.i*(grad^A)
    print '%\\nabla^{2}f =',grad|(grad*f)
    print 'grad^B =',grad^B

    """
    print '( \\nabla\\W\\nabla )\\bm{e}_{r} =',((grad^grad)*er).trigsimp()
    print '( \\nabla\\W\\nabla )\\bm{e}_{\\theta} =',((grad^grad)*eth).trigsimp()
    print '( \\nabla\\W\\nabla )\\bm{e}_{\\phi} =',((grad^grad)*ephi).trigsimp()
    """

    return
Ejemplo n.º 16
0
    def test_blade_coefs(self):
        """
        Various tests on several multivectors.
        """
        (_g3d, e_1, e_2, e_3) = Ga.build('e*1|2|3')

        m0 = 2 * e_1 + e_2 - e_3 + 3 * (e_1 ^ e_3) + (e_1 ^ e_3) + (e_2 ^
                                                                    (3 * e_3))
        self.assertTrue(m0.blade_coefs([e_1]) == [2])
        self.assertTrue(m0.blade_coefs([e_2]) == [1])
        self.assertTrue(m0.blade_coefs([e_1, e_2]) == [2, 1])
        self.assertTrue(m0.blade_coefs([e_1 ^ e_3]) == [4])
        self.assertTrue(m0.blade_coefs([e_1 ^ e_3, e_2 ^ e_3]) == [4, 3])
        self.assertTrue(m0.blade_coefs([e_2 ^ e_3, e_1 ^ e_3]) == [3, 4])
        self.assertTrue(m0.blade_coefs([e_1, e_2 ^ e_3]) == [2, 3])

        a = Symbol('a')
        b = Symbol('b')
        m1 = a * e_1 + e_2 - e_3 + b * (e_1 ^ e_2)
        self.assertTrue(m1.blade_coefs([e_1]) == [a])
        self.assertTrue(m1.blade_coefs([e_2]) == [1])
        self.assertTrue(m1.blade_coefs([e_3]) == [-1])
        self.assertTrue(m1.blade_coefs([e_1 ^ e_2]) == [b])
        self.assertTrue(m1.blade_coefs([e_2 ^ e_3]) == [0])
        self.assertTrue(m1.blade_coefs([e_1 ^ e_3]) == [0])
        self.assertTrue(m1.blade_coefs([e_1 ^ e_2 ^ e_3]) == [0])

        # Invalid parameters
        self.assertRaises(ValueError, lambda: m1.blade_coefs([e_1 + e_2]))
        self.assertRaises(ValueError, lambda: m1.blade_coefs([e_2 ^ e_1]))
        self.assertRaises(ValueError, lambda: m1.blade_coefs([e_1, e_2 ^ e_1]))
        self.assertRaises(ValueError, lambda: m1.blade_coefs([a * e_1]))
        self.assertRaises(ValueError, lambda: m1.blade_coefs([3 * e_3]))
Ejemplo n.º 17
0
def main():
    Print_Function()

    (a, b, c) = abc = symbols('a,b,c', real=True)
    (o3d, ea, eb, ec) = Ga.build('e_a e_b e_c', g=[1, 1, 1], coords=abc)
    grad = o3d.grad

    x = symbols('x', real=True)
    A = o3d.lt([[x*a*c**2,x**2*a*b*c,x**2*a**3*b**5],\
                [x**3*a**2*b*c,x**4*a*b**2*c**5,5*x**4*a*b**2*c],\
                [x**4*a*b**2*c**4,4*x**4*a*b**2*c**2,4*x**4*a**5*b**2*c]])
    print('A =', A)

    v = a * ea + b * eb + c * ec

    print('v =', v)

    f = v | A(v)

    print(r'%f = v\cdot \f{A}{v} =', f)

    (grad * f).Fmt(3, r'%\nabla f')

    Av = A(v)

    print(r'%\f{A}{v} =', Av)

    (grad * Av).Fmt(3, r'%\nabla \f{A}{v}')

    return
Ejemplo n.º 18
0
def Lorentz_Tranformation_in_Geog_Algebra():
    Print_Function()
    (alpha,beta,gamma) = symbols('alpha beta gamma')
    (x,t,xp,tp) = symbols("x t x' t'",real=True)
    (st2d,g0,g1) = Ga.build('gamma*t|x',g=[1,-1])

    from sympy import sinh,cosh

    R = cosh(alpha/2)+sinh(alpha/2)*(g0^g1)
    X = t*g0+x*g1
    Xp = tp*g0+xp*g1
    print 'R =',R

    print r"#%t\bm{\gamma_{t}}+x\bm{\gamma_{x}} = t'\bm{\gamma'_{t}}+x'\bm{\gamma'_{x}} = R\lp t'\bm{\gamma_{t}}+x'\bm{\gamma_{x}}\rp R^{\dagger}"

    Xpp = R*Xp*R.rev()
    Xpp = Xpp.collect()
    Xpp = Xpp.trigsimp()
    print r"%t\bm{\gamma_{t}}+x\bm{\gamma_{x}} =",Xpp
    Xpp = Xpp.subs({sinh(alpha):gamma*beta,cosh(alpha):gamma})

    print r'%\f{\sinh}{\alpha} = \gamma\beta'
    print r'%\f{\cosh}{\alpha} = \gamma'

    print r"%t\bm{\gamma_{t}}+x\bm{\gamma_{x}} =",Xpp.collect()
    return
Ejemplo n.º 19
0
def main():
    Eprint()

    X = (x,y,z) = symbols('x y z',real=True)
    (o3d,ex,ey,ez) = Ga.build('e_x e_y e_z',g=[1,1,1],coords=(x,y,z))

    A = x*(ey^ez) + y*(ez^ex) + z*(ex^ey)
    print 'A =', A
    print 'grad^A =',(o3d.grad^A).simplify()
    print

    f = o3d.mv(1/sqrt(x**2 + y**2 + z**2))
    print 'f =', f
    print 'grad*f =',(o3d.grad*f).simplify()
    print

    B = f*A
    print 'B =', B
    print

    Curl_B = o3d.grad^B

    print 'grad^B =', Curl_B.simplify()

    return
Ejemplo n.º 20
0
    def test_blade_coefs(self):
        """
        Various tests on several multivectors.
        """
        (_g3d, e_1, e_2, e_3) = Ga.build('e*1|2|3')

        m0 =  2 * e_1 + e_2 - e_3 + 3 * (e_1 ^ e_3) + (e_1 ^ e_3) + (e_2 ^ (3 * e_3))
        self.assertTrue(m0.blade_coefs([e_1]) == [2])
        self.assertTrue(m0.blade_coefs([e_2]) == [1])
        self.assertTrue(m0.blade_coefs([e_1, e_2]) == [2, 1])
        self.assertTrue(m0.blade_coefs([e_1 ^ e_3]) == [4])
        self.assertTrue(m0.blade_coefs([e_1 ^ e_3, e_2 ^ e_3]) == [4, 3])
        self.assertTrue(m0.blade_coefs([e_2 ^ e_3, e_1 ^ e_3]) == [3, 4])
        self.assertTrue(m0.blade_coefs([e_1, e_2 ^ e_3]) == [2, 3])

        a = Symbol('a')
        b = Symbol('b')
        m1 = a * e_1 + e_2 - e_3 + b * (e_1 ^ e_2)
        self.assertTrue(m1.blade_coefs([e_1]) == [a])
        self.assertTrue(m1.blade_coefs([e_2]) == [1])
        self.assertTrue(m1.blade_coefs([e_3]) == [-1])
        self.assertTrue(m1.blade_coefs([e_1 ^ e_2]) == [b])
        self.assertTrue(m1.blade_coefs([e_2 ^ e_3]) == [0])
        self.assertTrue(m1.blade_coefs([e_1 ^ e_3]) == [0])
        self.assertTrue(m1.blade_coefs([e_1 ^ e_2 ^ e_3]) == [0])

        # Invalid parameters
        self.assertRaises(ValueError, lambda: m1.blade_coefs([e_1 + e_2]))
        self.assertRaises(ValueError, lambda: m1.blade_coefs([e_2 ^ e_1]))
        self.assertRaises(ValueError, lambda: m1.blade_coefs([e_1, e_2 ^ e_1]))
        self.assertRaises(ValueError, lambda: m1.blade_coefs([a * e_1]))
        self.assertRaises(ValueError, lambda: m1.blade_coefs([3 * e_3]))
Ejemplo n.º 21
0
def Maxwells_Equations_in_Geom_Calculus():
    Print_Function()
    X = symbols('t x y z',real=True)
    (st4d,g0,g1,g2,g3) = Ga.build('gamma*t|x|y|z',g=[1,-1,-1,-1],coords=X)

    I = st4d.i

    B = st4d.mv('B','vector',f=True)
    E = st4d.mv('E','vector',f=True)
    B.set_coef(1,0,0)
    E.set_coef(1,0,0)
    B *= g0
    E *= g0
    J = st4d.mv('J','vector',f=True)
    F = E+I*B

    print r'\text{Pseudo Scalar\;\;}I =',I
    print '\\text{Magnetic Field Bi-Vector\\;\\;} B = \\bm{B\\gamma_{t}} =',B
    print '\\text{Electric Field Bi-Vector\\;\\;} E = \\bm{E\\gamma_{t}} =',E
    print '\\text{Electromagnetic Field Bi-Vector\\;\\;} F = E+IB =',F
    print '%\\text{Four Current Density\\;\\;} J =',J
    gradF = st4d.grad*F
    print '#Geom Derivative of Electomagnetic Field Bi-Vector'
    gradF.Fmt(3,'grad*F')

    print '#Maxwell Equations'
    print 'grad*F = J'
    print '#Div $E$ and Curl $H$ Equations'
    (gradF.get_grade(1)-J).Fmt(3,'%\\grade{\\nabla F}_{1} -J = 0')
    print '#Curl $E$ and Div $B$ equations'
    (gradF.get_grade(3)).Fmt(3,'%\\grade{\\nabla F}_{3} = 0')
    return
Ejemplo n.º 22
0
    def test_3_5_4(self):
        """
        The duality relationships.
        """

        Ga.dual_mode("Iinv+")

        R = Ga('e*1|2|3')
        A_blades = [R.mv('A', i, 'grade') for i in range(R.n + 1)]
        B_blades = [R.mv('B', i, 'grade') for i in range(R.n + 1)]

        for A, B in product(A_blades, B_blades):
            self.assertEquals((A ^ B).dual(), A < B.dual())

        for A, B in product(A_blades, B_blades):
            self.assertEquals((A < B).dual(), A ^ B.dual())
Ejemplo n.º 23
0
def main():
    Eprint()

    X = (x, y, z) = symbols('x y z', real=True)
    (o3d, ex, ey, ez) = Ga.build('e_x e_y e_z', g=[1, 1, 1], coords=(x, y, z))

    A = x * (ey ^ ez) + y * (ez ^ ex) + z * (ex ^ ey)
    print 'A =', A
    print 'grad^A =', (o3d.grad ^ A).simplify()
    print

    f = o3d.mv(1 / sqrt(x**2 + y**2 + z**2))
    print 'f =', f
    print 'grad*f =', (o3d.grad * f).simplify()
    print

    B = f * A
    print 'B =', B
    print

    Curl_B = o3d.grad ^ B

    print 'grad^B =', Curl_B.simplify()

    return
Ejemplo n.º 24
0
def Maxwells_Equations_in_Geom_Calculus():
    Print_Function()
    X = symbols('t x y z', real=True)
    (st4d, g0, g1, g2, g3) = Ga.build('gamma*t|x|y|z',
                                      g=[1, -1, -1, -1],
                                      coords=X)

    I = st4d.i

    B = st4d.mv('B', 'vector', f=True)
    E = st4d.mv('E', 'vector', f=True)
    B.set_coef(1, 0, 0)
    E.set_coef(1, 0, 0)
    B *= g0
    E *= g0
    J = st4d.mv('J', 'vector', f=True)
    F = E + I * B

    print r'\text{Pseudo Scalar\;\;}I =', I
    print '\\text{Magnetic Field Bi-Vector\\;\\;} B = \\bm{B\\gamma_{t}} =', B
    print '\\text{Electric Field Bi-Vector\\;\\;} E = \\bm{E\\gamma_{t}} =', E
    print '\\text{Electromagnetic Field Bi-Vector\\;\\;} F = E+IB =', F
    print '%\\text{Four Current Density\\;\\;} J =', J
    gradF = st4d.grad * F
    print '#Geom Derivative of Electomagnetic Field Bi-Vector'
    gradF.Fmt(3, 'grad*F')

    print '#Maxwell Equations'
    print 'grad*F = J'
    print '#Div $E$ and Curl $H$ Equations'
    print(gradF.get_grade(1) - J).Fmt(3, '%\\grade{\\nabla F}_{1} -J = 0')
    print '#Curl $E$ and Div $B$ equations'
    print(gradF.get_grade(3)).Fmt(3, '%\\grade{\\nabla F}_{3} = 0')
    return
Ejemplo n.º 25
0
    def test2_12_2_1(self):
        """
        In R2 with Euclidean metric, choose an orthonormal basis {e_1, e_2} in the plane of a and b such that e1 is parallel to a.
        Write x = a * e_1 and y = b * (cos(t) * e_1 + sin(t) * e_2), whete t is the angle from a to b.
        Evaluate the outer product. What is the geometrical interpretation ?
        """
        (_g2d, e_1, e_2) = Ga.build('e*1|2', g='1 0, 0 1')

        # TODO: use alpha, beta and theta instead of a, b and t (it crashes sympy)
        a = Symbol('a')
        b = Symbol('b')
        t = Symbol('t')
        x = a * e_1
        y = b * (cos(t) * e_1 + sin(t) * e_2)
        B = x ^ y
        self.assertTrue(B == (a * b * sin(t) * (e_1 ^ e_2)))

        # Retrieve the parallelogram area from the 2-vector
        area = B.norm()
        self.assertTrue(area == (a * b * sin(t)))

        # Compute the parallelogram area using the determinant
        x = [a, 0]
        y = [b * cos(t), b * sin(t)]
        area = Matrix([x, y]).det()
        self.assertTrue(area == (a * b * sin(t)))
Ejemplo n.º 26
0
def Dirac_Equation_in_Geom_Calculus():
    Print_Function()
    coords = symbols('t x y z', real=True)
    (st4d, g0, g1, g2, g3) = Ga.build('gamma*t|x|y|z',
                                      g=[1, -1, -1, -1],
                                      coords=coords)
    I = st4d.i

    (m, e) = symbols('m e')

    psi = st4d.mv('psi', 'spinor', f=True)
    A = st4d.mv('A', 'vector', f=True)
    sig_z = g3 * g0

    print '\\text{4-Vector Potential\\;\\;}\\bm{A} =', A
    print '\\text{8-component real spinor\\;\\;}\\bm{\\psi} =', psi

    dirac_eq = (st4d.grad * psi) * I * sig_z - e * A * psi - m * psi * g0
    dirac_eq = dirac_eq.simplify()

    print dirac_eq.Fmt(
        3,
        r'%\text{Dirac Equation\;\;}\nabla \bm{\psi} I \sigma_{z}-e\bm{A}\bm{\psi}-m\bm{\psi}\gamma_{t} = 0'
    )

    return
Ejemplo n.º 27
0
def basic_multivector_operations_2D():
    Print_Function()
    g2d = Ga('e*x|y')
    (ex,ey) = g2d.mv()

    print 'g_{ij} =',g2d.g

    X = g2d.mv('X','vector')
    A = g2d.mv('A','spinor')

    print X.Fmt(1,'X')
    print A.Fmt(1,'A')

    print (X|A).Fmt(2,'X|A')
    print (X<A).Fmt(2,'X<A')
    print (A>X).Fmt(2,'A>X')
    return
Ejemplo n.º 28
0
def check_generalized_BAC_CAB_formulas():
    Print_Function()
    g4d = Ga('a b c d')
    (a,b,c,d) = g4d.mv()

    print 'g_{ij} =',g4d.g

    print '\\bm{a|(b*c)} =',a|(b*c)
    print '\\bm{a|(b^c)} =',a|(b^c)
    print '\\bm{a|(b^c^d)} =',a|(b^c^d)
    print '\\bm{a|(b^c)+c|(a^b)+b|(c^a)} =',(a|(b^c))+(c|(a^b))+(b|(c^a))
    print '\\bm{a*(b^c)-b*(a^c)+c*(a^b)} =',a*(b^c)-b*(a^c)+c*(a^b)
    print '\\bm{a*(b^c^d)-b*(a^c^d)+c*(a^b^d)-d*(a^b^c)} =',a*(b^c^d)-b*(a^c^d)+c*(a^b^d)-d*(a^b^c)
    print '\\bm{(a^b)|(c^d)} =',(a^b)|(c^d)
    print '\\bm{((a^b)|c)|d} =',((a^b)|c)|d
    print '\\bm{(a^b)\\times (c^d)} =',com(a^b,c^d)
    return
Ejemplo n.º 29
0
def basic_multivector_operations_2D():
    Print_Function()
    g2d = Ga('e*x|y')
    (ex,ey) = g2d.mv()

    print 'g_{ij} =',g2d.g

    X = g2d.mv('X','vector')
    A = g2d.mv('A','spinor')

    X.Fmt(1,'X')
    A.Fmt(1,'A')

    (X|A).Fmt(2,'X|A')
    (X<A).Fmt(2,'X<A')
    (A>X).Fmt(2,'A>X')
    return
Ejemplo n.º 30
0
def check_generalized_BAC_CAB_formulas():
    Print_Function()
    g4d = Ga('a b c d')
    (a,b,c,d) = g4d.mv()

    print 'g_{ij} =',g4d.g

    print '\\bm{a|(b*c)} =',a|(b*c)
    print '\\bm{a|(b^c)} =',a|(b^c)
    print '\\bm{a|(b^c^d)} =',a|(b^c^d)
    print '\\bm{a|(b^c)+c|(a^b)+b|(c^a)} =',(a|(b^c))+(c|(a^b))+(b|(c^a))
    print '\\bm{a*(b^c)-b*(a^c)+c*(a^b)} =',a*(b^c)-b*(a^c)+c*(a^b)
    print '\\bm{a*(b^c^d)-b*(a^c^d)+c*(a^b^d)-d*(a^b^c)} =',a*(b^c^d)-b*(a^c^d)+c*(a^b^d)-d*(a^b^c)
    print '\\bm{(a^b)|(c^d)} =',(a^b)|(c^d)
    print '\\bm{((a^b)|c)|d} =',((a^b)|c)|d
    print '\\bm{(a^b)\\times (c^d)} =',Com(a^b,c^d)
    return
Ejemplo n.º 31
0
def derivatives_in_rectangular_coordinates():
    Print_Function()
    X = (x, y, z) = symbols('x y z')
    o3d = Ga('e_x e_y e_z', g=[1, 1, 1], coords=X)
    (ex, ey, ez) = o3d.mv()
    grad = o3d.grad

    f = o3d.mv('f', 'scalar', f=True)
    A = o3d.mv('A', 'vector', f=True)
    B = o3d.mv('B', 'bivector', f=True)
    C = o3d.mv('C', 'mv')
    print('f =', f)
    print('A =', A)
    print('B =', B)
    print('C =', C)

    print('grad*f =', grad * f)
    print('grad|A =', grad | A)
    print('grad*A =', grad * A)

    print('-I*(grad^A) =', -o3d.I() * (grad ^ A))
    print('grad*B =', grad * B)
    print('grad^B =', grad ^ B)
    print('grad|B =', grad | B)
    return
Ejemplo n.º 32
0
def derivatives_in_rectangular_coordinates():
    Print_Function()

    X = (x, y, z) = symbols('x y z')
    o3d = Ga('e_x e_y e_z', g=[1, 1, 1], coords=X)
    (ex, ey, ez) = o3d.mv()
    grad = o3d.grad

    f = o3d.mv('f', 'scalar', f=True)
    A = o3d.mv('A', 'vector', f=True)
    B = o3d.mv('B', 'bivector', f=True)
    C = o3d.mv('C', 'mv', f=True)
    print 'f =', f
    print 'A =', A
    print 'B =', B
    print 'C =', C

    print 'grad*f =', grad * f
    print 'grad|A =', grad | A
    print 'grad*A =', grad * A

    print '-I*(grad^A) =', -o3d.E() * (grad ^ A)
    print 'grad*B =', grad * B
    print 'grad^B =', grad ^ B
    print 'grad|B =', grad | B

    print 'grad<A =', grad < A
    print 'grad>A =', grad > A
    print 'grad<B =', grad < B
    print 'grad>B =', grad > B
    print 'grad<C =', grad < C
    print 'grad>C =', grad > C

    return
Ejemplo n.º 33
0
    def test_3_5_2(self):
        """
        The inverse of a blade.
        """

        Ga.dual_mode("Iinv+")

        R = Ga('e*1|2|3')
        A_blades = [R.mv('A', i, 'grade') for i in range(R.n + 1)]

        for A in A_blades:
            self.assertEquals(A.inv(), ((-1) ** (A.pure_grade() * (A.pure_grade() - 1) / 2)) * (A / A.norm2()))

        for A in A_blades:
            self.assertEquals(A < A.inv(), 1)

        A = A_blades[1]
        self.assertEquals(A.inv(), A / A.norm2())
Ejemplo n.º 34
0
def General_Lorentz_Tranformation():
    Print_Function()
    (alpha, beta, gamma) = symbols('alpha beta gamma')
    (x, y, z, t) = symbols("x y z t", real=True)
    (st4d, g0, g1, g2, g3) = Ga.build('gamma*t|x|y|z', g=[1, -1, -1, -1])

    B = (x * g1 + y * g2 + z * g3) ^ (t * g0)
    print B
    print B.exp(hint='+')
    print B.exp(hint='-')
Ejemplo n.º 35
0
def derivatives_in_spherical_coordinates():
    Print_Function()
    X = (r,th,phi) = symbols('r theta phi')
    s3d = Ga('e_r e_theta e_phi',g=[1,r**2,r**2*sin(th)**2],coords=X,norm=True)
    (er,eth,ephi) = s3d.mv()
    grad = s3d.grad

    f = s3d.mv('f','scalar',f=True)
    A = s3d.mv('A','vector',f=True)
    B = s3d.mv('B','bivector',f=True)

    print 'f =',f
    print 'A =',A
    print 'B =',B

    print 'grad*f =',grad*f
    print 'grad|A =',grad|A
    print '-I*(grad^A) =',(-s3d.i*(grad^A)).simplify()
    print 'grad^B =',grad^B
Ejemplo n.º 36
0
 def test2_12_1_3(self):
     """
     What is the area of the parallelogram spanned by the vectors a = e_1 + 2*e_2
     and b = -e_1 - e_2 (relative to the area of e_1 ^ e_2) ?
     """
     (_g3d, e_1, e_2, _e_3) = Ga.build('e*1|2|3')
     a = e_1 + 2*e_2
     b = -e_1 - e_2
     B = a ^ b
     self.assertTrue(B == 1 * (e_1 ^ e_2))
Ejemplo n.º 37
0
def General_Lorentz_Tranformation():
    Print_Function()
    (alpha, beta, gamma) = symbols("alpha beta gamma")
    (x, y, z, t) = symbols("x y z t", real=True)
    (st4d, g0, g1, g2, g3) = Ga.build("gamma*t|x|y|z", g=[1, -1, -1, -1])

    B = (x * g1 + y * g2 + z * g3) ^ (t * g0)
    print B
    print B.exp(hint="+")
    print B.exp(hint="-")
Ejemplo n.º 38
0
def conformal_representations_of_circles_lines_spheres_and_planes():
    global n, nbar
    Print_Function()

    g = '1 0 0 0 0,0 1 0 0 0,0 0 1 0 0,0 0 0 0 2,0 0 0 2 0'

    cnfml3d = Ga('e_1 e_2 e_3 n nbar', g=g)

    (e1, e2, e3, n, nbar) = cnfml3d.mv()

    print 'g_{ij} =\n', cnfml3d.g

    e = n + nbar
    #conformal representation of points

    A = make_vector(e1, ga=cnfml3d)  # point a = (1,0,0)  A = F(a)
    B = make_vector(e2, ga=cnfml3d)  # point b = (0,1,0)  B = F(b)
    C = make_vector(-e1, ga=cnfml3d)  # point c = (-1,0,0) C = F(c)
    D = make_vector(e3, ga=cnfml3d)  # point d = (0,0,1)  D = F(d)
    X = make_vector('x', 3, ga=cnfml3d)

    print 'F(a) =', A
    print 'F(b) =', B
    print 'F(c) =', C
    print 'F(d) =', D
    print 'F(x) =', X

    print 'a = e1, b = e2, c = -e1, and d = e3'
    print 'A = F(a) = 1/2*(a*a*n+2*a-nbar), etc.'
    print 'Circle through a, b, and c'
    print 'Circle: A^B^C^X = 0 =', (A ^ B ^ C ^ X)
    print 'Line through a and b'
    print 'Line  : A^B^n^X = 0 =', (A ^ B ^ n ^ X)
    print 'Sphere through a, b, c, and d'
    print 'Sphere: A^B^C^D^X = 0 =', (((A ^ B) ^ C) ^ D) ^ X
    print 'Plane through a, b, and d'
    print 'Plane : A^B^n^D^X = 0 =', (A ^ B ^ n ^ D ^ X)

    L = (A ^ B ^ e) ^ X

    print L.Fmt(3, 'Hyperbolic Circle: (A^B^e)^X = 0 =')
    return
Ejemplo n.º 39
0
def conformal_representations_of_circles_lines_spheres_and_planes():
    global n,nbar
    Print_Function()

    g = '1 0 0 0 0,0 1 0 0 0,0 0 1 0 0,0 0 0 0 2,0 0 0 2 0'

    cnfml3d = Ga('e_1 e_2 e_3 n nbar',g=g)

    (e1,e2,e3,n,nbar) = cnfml3d.mv()

    print 'g_{ij} =\n',cnfml3d.g

    e = n+nbar
    #conformal representation of points

    A = make_vector(e1,ga=cnfml3d)    # point a = (1,0,0)  A = F(a)
    B = make_vector(e2,ga=cnfml3d)    # point b = (0,1,0)  B = F(b)
    C = make_vector(-e1,ga=cnfml3d)   # point c = (-1,0,0) C = F(c)
    D = make_vector(e3,ga=cnfml3d)    # point d = (0,0,1)  D = F(d)
    X = make_vector('x',3,ga=cnfml3d)

    print 'F(a) =',A
    print 'F(b) =',B
    print 'F(c) =',C
    print 'F(d) =',D
    print 'F(x) =',X

    print 'a = e1, b = e2, c = -e1, and d = e3'
    print 'A = F(a) = 1/2*(a*a*n+2*a-nbar), etc.'
    print 'Circle through a, b, and c'
    print 'Circle: A^B^C^X = 0 =',(A^B^C^X)
    print 'Line through a and b'
    print 'Line  : A^B^n^X = 0 =',(A^B^n^X)
    print 'Sphere through a, b, c, and d'
    print 'Sphere: A^B^C^D^X = 0 =',(((A^B)^C)^D)^X
    print 'Plane through a, b, and d'
    print 'Plane : A^B^n^D^X = 0 =',(A^B^n^D^X)

    L = (A^B^e)^X

    print L.Fmt(3,'Hyperbolic Circle: (A^B^e)^X = 0 =')
    return
Ejemplo n.º 40
0
 def test2_12_1_2(self):
     """
     Given the 2-blade B = e_1 ^ (e_2 - e_3) that represents a plane,
     determine if each of the following vectors lies in that plane.
     """
     (_g3d, e_1, e_2, e_3) = Ga.build('e*1|2|3')
     B = e_1 ^ (e_2 - e_3)
     self.assertTrue(e_1 ^ B == 0)
     self.assertFalse((e_1 + e_2) ^ B == 0)
     self.assertFalse((e_1 + e_2 + e_3) ^ B == 0)
     self.assertTrue((2*e_1 - e_2 + e_3) ^ B == 0)
Ejemplo n.º 41
0
def conformal_representations_of_circles_lines_spheres_and_planes():
    Print_Function()
    global n, nbar
    Fmt(1)
    g = '1 0 0 0 0,0 1 0 0 0,0 0 1 0 0,0 0 0 0 2,0 0 0 2 0'

    c3d = Ga('e_1 e_2 e_3 n \\bar{n}', g=g)
    (e1, e2, e3, n, nbar) = c3d.mv()

    print('g_{ij} =', c3d.g)

    e = n + nbar
    #conformal representation of points

    A = make_vector(e1, ga=c3d)  # point a = (1,0,0)  A = F(a)
    B = make_vector(e2, ga=c3d)  # point b = (0,1,0)  B = F(b)
    C = make_vector(-e1, ga=c3d)  # point c = (-1,0,0) C = F(c)
    D = make_vector(e3, ga=c3d)  # point d = (0,0,1)  D = F(d)
    X = make_vector('x', 3, ga=c3d)

    print('F(a) =', A)
    print('F(b) =', B)
    print('F(c) =', C)
    print('F(d) =', D)
    print('F(x) =', X)

    print('#a = e1, b = e2, c = -e1, and d = e3')
    print('#A = F(a) = 1/2*(a*a*n+2*a-nbar), etc.')
    print('#Circle through a, b, and c')
    print('Circle: A^B^C^X = 0 =', (A ^ B ^ C ^ X))
    print('#Line through a and b')
    print('Line  : A^B^n^X = 0 =', (A ^ B ^ n ^ X))
    print('#Sphere through a, b, c, and d')
    print('Sphere: A^B^C^D^X = 0 =', (((A ^ B) ^ C) ^ D) ^ X)
    print('#Plane through a, b, and d')
    print('Plane : A^B^n^D^X = 0 =', (A ^ B ^ n ^ D ^ X))

    L = (A ^ B ^ e) ^ X

    L.Fmt(3, 'Hyperbolic\\;\\; Circle: (A^B^e)^X = 0')
    return
Ejemplo n.º 42
0
 def test_2_12_1_1(self):
     """
     Compute the outer products of the following 3-space expressions,
     giving the result relative to the basis {1, e_1, e_2, e_3, e_1^e_2, e_1^e_3, e_2^e_3, e_1^e_2^e_3}.
     """
     (_g3d, e_1, e_2, e_3) = Ga.build('e*1|2|3')
     self.assertTrue((e_1 + e_2) ^ (e_1 + e_3) == (-e_1 ^ e_2) + (e_1 ^ e_3) + (e_2 ^ e_3))
     self.assertTrue((e_1 + e_2 + e_3) ^ (2*e_1) == -2*(e_1 ^ e_2) - 2*(e_1 ^ e_3))
     self.assertTrue((e_1 - e_2) ^ (e_1 - e_3) == (e_1 ^ e_2) - (e_1 ^ e_3) + (e_2 ^ e_3))
     self.assertTrue((e_1 + e_2) ^ (0.5*e_1 + 2*e_2 + 3*e_3) == 1.5*(e_1 ^ e_2) + 3*(e_1 ^ e_3) + 3*(e_2 ^ e_3))
     self.assertTrue((e_1 ^ e_2) ^ (e_1 + e_3) == (e_1 ^ e_2 ^ e_3))
     self.assertTrue((e_1 + e_2) ^ ((e_1 ^ e_2) + (e_2 ^ e_3)) == (e_1 ^ e_2 ^ e_3))
Ejemplo n.º 43
0
def check_generalized_BAC_CAB_formulas():
    Print_Function()

    g5d = Ga('a b c d e')

    (a, b, c, d, e) = g5d.mv()

    print 'g_{ij} =\n', g5d.g

    print 'a|(b*c) =', a | (b * c)
    print 'a|(b^c) =', a | (b ^ c)
    print 'a|(b^c^d) =', a | (b ^ c ^ d)
    print 'a|(b^c)+c|(a^b)+b|(c^a) =', (a | ( b ^ c)) + (c | (a ^ b)) + (b | (c ^ a))
    print 'a*(b^c)-b*(a^c)+c*(a^b) =',a*(b^c)-b*(a^c)+c*(a^b)
    print 'a*(b^c^d)-b*(a^c^d)+c*(a^b^d)-d*(a^b^c) =',a*(b^c^d)-b*(a^c^d)+c*(a^b^d)-d*(a^b^c)
    print '(a^b)|(c^d) =',(a^b)|(c^d)
    print '((a^b)|c)|d =',((a^b)|c)|d
    print '(a^b)x(c^d) =',com(a^b,c^d)
    print '(a|(b^c))|(d^e) =',(a|(b^c))|(d^e)

    return
Ejemplo n.º 44
0
def Mv_setup_options():
    Print_Function()

    (o3d,e1,e2,e3) = Ga.build('e_1 e_2 e_3',g=[1,1,1])
    v = o3d.mv('v', 'vector')
    print v

    (o3d,e1,e2,e3) = Ga.build('e*1|2|3',g=[1,1,1])
    v = o3d.mv('v', 'vector')
    print v

    (o3d,e1,e2,e3) = Ga.build('e*x|y|z',g=[1,1,1])
    v = o3d.mv('v', 'vector')
    print v

    coords = symbols('x y z',real=True)
    (o3d,e1,e2,e3) = Ga.build('e',g=[1,1,1],coords=coords)
    v = o3d.mv('v', 'vector')
    print v

    return
Ejemplo n.º 45
0
def check_generalized_BAC_CAB_formulas():
    Print_Function()

    g5d = Ga('a b c d e')

    (a, b, c, d, e) = g5d.mv()

    print('g_{ij} =\n', g5d.g)

    print('a|(b*c) =', a | (b * c))
    print('a|(b^c) =', a | (b ^ c))
    print('a|(b^c^d) =', a | (b ^ c ^ d))
    print('a|(b^c)+c|(a^b)+b|(c^a) =', (a | ( b ^ c)) + (c | (a ^ b)) + (b | (c ^ a)))
    print('a*(b^c)-b*(a^c)+c*(a^b) =',a*(b^c)-b*(a^c)+c*(a^b))
    print('a*(b^c^d)-b*(a^c^d)+c*(a^b^d)-d*(a^b^c) =',a*(b^c^d)-b*(a^c^d)+c*(a^b^d)-d*(a^b^c))
    print('(a^b)|(c^d) =',(a^b)|(c^d))
    print('((a^b)|c)|d =',((a^b)|c)|d)
    print('(a^b)x(c^d) =',com(a^b,c^d))
    print('(a|(b^c))|(d^e) =',(a|(b^c))|(d^e))

    return
Ejemplo n.º 46
0
def Mv_setup_options():
    Print_Function()

    (o3d, e1, e2, e3) = Ga.build('e_1 e_2 e_3', g=[1, 1, 1])
    v = o3d.mv('v', 'vector')
    print v

    (o3d, e1, e2, e3) = Ga.build('e*1|2|3', g=[1, 1, 1])
    v = o3d.mv('v', 'vector')
    print v

    (o3d, e1, e2, e3) = Ga.build('e*x|y|z', g=[1, 1, 1])
    v = o3d.mv('v', 'vector')
    print v

    coords = symbols('x y z', real=True)
    (o3d, e1, e2, e3) = Ga.build('e', g=[1, 1, 1], coords=coords)
    v = o3d.mv('v', 'vector')
    print v

    return
Ejemplo n.º 47
0
def derivatives_in_spherical_coordinates():
    Print_Function()
    X = (r, th, phi) = symbols('r theta phi')
    s3d = Ga('e_r e_theta e_phi',
             g=[1, r**2, r**2 * sin(th)**2],
             coords=X,
             norm=True)
    (er, eth, ephi) = s3d.mv()
    grad = s3d.grad

    f = s3d.mv('f', 'scalar', f=True)
    A = s3d.mv('A', 'vector', f=True)
    B = s3d.mv('B', 'bivector', f=True)

    print 'f =', f
    print 'A =', A
    print 'B =', B

    print 'grad*f =', grad * f
    print 'grad|A =', grad | A
    print '-I*(grad^A) =', (-s3d.i * (grad ^ A)).simplify()
    print 'grad^B =', grad ^ B
Ejemplo n.º 48
0
    def test_3_6(self):
        """
        Orthogonal projection of subspaces.
        """

        Ga.dual_mode("Iinv+")

        R = Ga('e*1|2|3')
        X_blades = [R.mv('X', i, 'grade') for i in range(R.n + 1)]
        B_blades = [R.mv('B', i, 'grade') for i in range(R.n + 1)]

        # projection of X on B
        def P(X, B):
            return (X < B.inv()) < B

        # a projection should be idempotent
        for X, B in product(X_blades, B_blades):
            self.assertEquals(P(X, B), P(P(X, B), B))

        # with the contraction
        for X, B in product(X_blades, B_blades):
            self.assertEquals(X < B, P(X, B) < B)
Ejemplo n.º 49
0
def basic_multivector_operations_2D_orthogonal():
    Print_Function()
    o2d = Ga('e*x|y',g=[1,1])
    (ex,ey) = o2d.mv()
    print 'g_{ii} =',o2d.g

    X = o2d.mv('X','vector')
    A = o2d.mv('A','spinor')

    X.Fmt(1,'X')
    A.Fmt(1,'A')

    (X*A).Fmt(2,'X*A')
    (X|A).Fmt(2,'X|A')
    (X<A).Fmt(2,'X<A')
    (X>A).Fmt(2,'X>A')

    (A*X).Fmt(2,'A*X')
    (A|X).Fmt(2,'A|X')
    (A<X).Fmt(2,'A<X')
    (A>X).Fmt(2,'A>X')
    return
Ejemplo n.º 50
0
def basic_multivector_operations_2D_orthogonal():
    Print_Function()
    o2d = Ga('e*x|y',g=[1,1])
    (ex,ey) = o2d.mv()
    print 'g_{ii} =',o2d.g

    X = o2d.mv('X','vector')
    A = o2d.mv('A','spinor')

    print X.Fmt(1,'X')
    print A.Fmt(1,'A')

    print (X*A).Fmt(2,'X*A')
    print (X|A).Fmt(2,'X|A')
    print (X<A).Fmt(2,'X<A')
    print (X>A).Fmt(2,'X>A')

    print (A*X).Fmt(2,'A*X')
    print (A|X).Fmt(2,'A|X')
    print (A<X).Fmt(2,'A<X')
    print (A>X).Fmt(2,'A>X')
    return
Ejemplo n.º 51
0
def coefs_test():
    Print_Function()

    (o3d, e1, e2, e3) = Ga.build("e_1 e_2 e_3", g=[1, 1, 1])
    print o3d.blades_lst
    print o3d.mv_blades_lst
    v = o3d.mv("v", "vector")
    print v
    print v.blade_coefs([e3, e1])
    A = o3d.mv("A", "mv")
    print A
    print A.blade_coefs([e1 ^ e3, e3, e1 ^ e2, e1 ^ e2 ^ e3])
    print A.blade_coefs()
    return
Ejemplo n.º 52
0
def coefs_test():
    Print_Function()

    (o3d, e1, e2, e3) = Ga.build('e_1 e_2 e_3', g=[1, 1, 1])
    print(o3d.blades_lst)
    print(o3d.mv_blades_lst)
    v = o3d.mv('v', 'vector')
    print(v)
    print(v.blade_coefs([e3, e1]))
    A = o3d.mv('A', 'mv')
    print(A)
    print(A.blade_coefs([e1 ^ e3, e3, e1 ^ e2, e1 ^ e2 ^ e3]))
    print(A.blade_coefs())
    return
Ejemplo n.º 53
0
def Lie_Group():
    Print_Function()
    coords = symbols('t x y z',real=True)
    (st4d,g0,g1,g2,g3) = Ga.build('gamma*t|x|y|z',g=[1,-1,-1,-1],coords=coords)
    I = st4d.i

    a = st4d.mv('a','vector')
    B = st4d.mv('B','bivector')
    print('a =',a)
    print('B =',B)
    print('a|B =', a|B)
    print(((a|B)|B).simplify().Fmt(3,'(a|B)|B'))
    print((((a|B)|B)|B).simplify().Fmt(3,'((a|B)|B)|B'))

    return
Ejemplo n.º 54
0
def main():
    Format()
    snr=1
    g = '0 0 1 0 ,0 0 0 1 ,1 0 0 0 ,0 1 0 0'
    sk4coords = (e1,e2,e3,e4) = symbols('e1 e2 e3 e4')
    sk4 = Ga('e_1 e_2 e_3 e_4', g=g, coords=sk4coords)
    (e1,e2,e3,e4) = sk4.mv()
    print 'g_{ii} =',sk4.g

    v = symbols('v', real=True)
    x1=(e1+e3)/sqrt(2)
    x2=(e2+e4)/sqrt(2)
    print 'x_1<x_1==',x1<x1
    print 'x_1<x_2==',x1<x2
    print 'x_2<x_1==',x2<x1
    print 'x_2<x_2==',x2<x2
    print r'#$-\infty < v < \infty$'
    print '(-v*(x_1^x_2)/2).exp()==',(-v*(x1^x2)/2).exp()
    v = symbols('v', real=True, positive=True)
    print r'#$0\le v < \infty$'
    print '(-v*(x_1^x_2)/2).exp()==',(-v*(x1^x2)/2).exp()

    xpdf()
    return
Ejemplo n.º 55
0
def generateit():
    #
    # 繁衍多代
    # 返回,最终编码coding,每次繁衍的编码decodings,每次繁衍的适应度值fitnessvalues,初始编码iniplot,每代的适应度值fitness
    #
    inipol = ga.codeit(n, length)
    decodings = []
    fitnessvalues = []
    fitness = []
    iniplot = np.copy(inipol).tolist()
    for i in range(g):
        inipol = multiply(inipol)[0]
        decodings.append(multiply(inipol)[1])
        fitnessvalues.append(multiply(inipol)[2])
        fitness.append(np.mean(multiply(inipol)[2]))
    return inipol, decodings, fitnessvalues, iniplot, fitness
Ejemplo n.º 56
0
def basic_multivector_operations_2D():
    Print_Function()

    (g2d,ex,ey) = Ga.build('e*x|y')

    print('g_{ij} =',g2d.g)

    X = g2d.mv('X','vector')
    A = g2d.mv('A','spinor')

    print(X.Fmt(1,'X'))
    print(A.Fmt(1,'A'))

    print((X|A).Fmt(2,'X|A'))
    print((X<A).Fmt(2,'X<A'))
    print((A>X).Fmt(2,'A>X'))
    return
Ejemplo n.º 57
0
def test_check_generalized_BAC_CAB_formulas():
    (a, b, c, d, e) = MV.setup('a b c d e')

    assert str(a | (b * c)) == '-(a.c)*b + (a.b)*c'
    assert str(a | (b ^ c)) == '-(a.c)*b + (a.b)*c'
    assert str(a | (b ^ c ^ d)) == '(a.d)*b^c - (a.c)*b^d + (a.b)*c^d'
    #assert str( (a|(b^c))+(c|(a^b))+(b|(c^a)) ) == '0'
    assert str(a * (b ^ c) - b * (a ^ c) + c * (a ^ b)) == '3*a^b^c'
    assert str(a * (b ^ c ^ d) - b * (a ^ c ^ d) + c * (a ^ b ^ d) - d *
               (a ^ b ^ c)) == '4*a^b^c^d'
    assert str((a ^ b) | (c ^ d)) == '-(a.c)*(b.d) + (a.d)*(b.c)'
    assert str(((a ^ b) | c) | d) == '-(a.c)*(b.d) + (a.d)*(b.c)'
    assert str(Ga.com(a ^ b, c
                      ^ d)) == '-(b.d)*a^c + (b.c)*a^d + (a.d)*b^c - (a.c)*b^d'
    assert str(
        (a | (b ^ c)) | (d ^ e)
    ) == '(-(a.b)*(c.e) + (a.c)*(b.e))*d + ((a.b)*(c.d) - (a.c)*(b.d))*e'
    return
Ejemplo n.º 58
0
def main():
    Eprint()
    (o3d, ex, ey, ez) = Ga.build('e*x|y|z', g=[1, 1, 1])

    u = o3d.mv('u', 'vector')
    v = o3d.mv('v', 'vector')
    w = o3d.mv('w', 'vector')
    print u
    print v

    uv = u ^ v
    print uv
    print uv.is_blade()

    exp_uv = uv.exp()
    print 'exp(uv) =', exp_uv

    return
Ejemplo n.º 59
0
def EM_Waves_in_Geom_Calculus_Complex():
    #Print_Function()
    X = (t, x, y, z) = symbols('t x y z', real=True)
    g = '1 # # 0,# 1 # 0,# # 1 0,0 0 0 -1'
    coords = (xE, xB, xk, t) = symbols('x_E x_B x_k t', real=True)
    (EBkst, eE, eB, ek, et) = Ga.build('e_E e_B e_k e_t', g=g, coords=coords)

    i = EBkst.i

    E, B, k, w = symbols('E B k omega', real=True)

    F = E * eE * et + i * B * eB * et
    K = k * ek + w * et
    X = xE * eE + xB * eB + xk * ek + t * et
    KX = (K | X).scalar()
    F = F * exp(I * KX)

    g = EBkst.g

    print('g =', g)
    print('X =', X)
    print('K =', K)
    print('K|X =', KX)
    print('F =', F)

    gradF = EBkst.grad * F

    gradF = gradF.simplify()

    (gradF).Fmt(3, 'grad*F = 0')

    gradF = gradF.subs({g[0, 1]: 0, g[0, 2]: 0, g[1, 2]: 0})

    KX = KX.subs({g[0, 1]: 0, g[0, 2]: 0, g[1, 2]: 0})

    print(
        r'%\mbox{Substituting }e_{E}\cdot e_{B} = e_{E}\cdot e_{k} = e_{B}\cdot e_{k} = 0'
    )

    (gradF / (I * exp(I * KX))).Fmt(
        3, r'%\lp\bm{\nabla}F\rp/\lp ie^{iK\cdot X}\rp = 0')

    return
Ejemplo n.º 60
0
    def test_is_base(self):
        """
        Various tests on several multivectors.
        """
        (_g3d, e_1, e_2, e_3) = Ga.build('e*1|2|3')

        self.assertTrue((e_1).is_base())
        self.assertTrue((e_2).is_base())
        self.assertTrue((e_3).is_base())
        self.assertTrue((e_1 ^ e_2).is_base())
        self.assertTrue((e_2 ^ e_3).is_base())
        self.assertTrue((e_1 ^ e_3).is_base())
        self.assertTrue((e_1 ^ e_2 ^ e_3).is_base())

        self.assertFalse((2 * e_1).is_base())
        self.assertFalse((e_1 + e_2).is_base())
        self.assertFalse((e_3 * 4).is_base())
        self.assertFalse(((3 * e_1) ^ e_2).is_base())
        self.assertFalse((2 * (e_2 ^ e_3)).is_base())
        self.assertFalse((e_3 ^ e_1).is_base())
        self.assertFalse((e_2 ^ e_1 ^ e_3).is_base())