Ejemplo n.º 1
0
def plot_data_gen(filename):
    cxgs = ["cxg_4/", "cxg_3/"]
    for cxg_select in cxgs:
        ewfix = "sameseed/ew/" + cxg_select
        outfix = "sameseed/plot/app3/" + cxg_select

        outfile = infile = filename

        start = time.time()

        mysas = SAS()
        mysas.import_states(ewfix + infile)
        # mysas.import_cs(gcfix + infile)
        # mysas.assign_channels()
        #
        # app1_bw = eval.get_plotdata_bandwidth(mysas)
        # app1_ix_ic = eval.get_plotdata_inter_cxg_ix_per_ch(mysas)
        #
        # eval.save_content(app1_bw, outfix + outfile + "_app1.bw")
        # # keys for .get()
        # # "avg_bw_actual":  one value for Avg. Bandwidth per CBSD
        # # "cdf_bw_actual":  cdf for Avg. BW
        #
        # eval.save_content(app1_ix_ic, outfix + outfile + "_app1.ixic")
        # # keys for .get()
        # # "dbm_per_ch": cdf for Avg. inter-CxG ix
        # # "avg_ix_per_ch_per_cbsd": one value for Avg. inter-CxG ix per CBSD
        # # "max_noises": cdf for Max. inter-CxG ix
        # # "min_noises": cdf for Min. inter-CxG ix

        for et in [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]:

            app3_bw = eval.get_bw_app3(mysas, et)
            app3_ix_ic = eval.get_ix_app3(mysas, et)

            eval.save_content(app3_bw,
                              outfix + outfile + "_app3_" + str(et) + ".bw")
            # keys for .get()
            # "et": et,
            #  "cdf_bw_max": cdf for Max_BW
            #  "avg_bw_max": one value for Avg. Max_BW per CBSD

            eval.save_content(app3_ix_ic,
                              outfix + outfile + "_app3_" + str(et) + ".ixic")
            # keys for .get()
            # "et": et,
            # "cdf_ix":     cdf for inter-CxG ix
            # "avg_ix_max": one value for Avg. inter-CxG ix per CBSD

        stop = time.time()

        print infile, cxg_select, "ready! in", "{0:.4f}".format(
            stop - start), "seconds"
Ejemplo n.º 2
0
def plot_data(filename):
    cxgs = ["cxg_4/"]
    for cxg_select in cxgs:
        infix = "sameseed/repeat/plot/app3/" + cxg_select
        outfix = infix
        # infix = "simpseed/plot/" + cxg_select
        infile = filename + "_app3.noise"

        content = eval.load_content(infix + infile)

        cxgs = content.get("coverage").keys()
        coverage = content.get("coverage")
        noises = content.get("noise")
        grids = content.get("grid")

        cov = {x for val in coverage.values() for x in val}
        # print "Coverage all CBSDS:", len(cov)

        ix_value_by_et = {}
        ix_coverage_by_et = {}

        signal_coverage = {target_cxg : len(coverage.get(target_cxg)) for target_cxg in cxgs}

        for et in ets:

            ix_value_by_cxg = {}
            ix_coverage_by_cxg = {}
            for target_cxg in cxgs:
                target_cxg_coverage = len(coverage.get(target_cxg))

                target_cxg_noises_map = {key: val.get(str(et)).get("all")
                                         for key, val in noises.get(target_cxg).items()
                                         if noises.get(target_cxg).get(key).get(str(et)) is not None}
                interfered_grids = len(target_cxg_noises_map) if target_cxg_noises_map is not None else 0
                avg_noise_level = eval.get_per_unit_dbm(target_cxg_noises_map.values(), interfered_grids * 1.0)

                ix_coverage_by_cxg[target_cxg] = interfered_grids * 100.0 / target_cxg_coverage
                ix_value_by_cxg[target_cxg] = avg_noise_level

            ix_coverage_by_et[str(et)] = ix_coverage_by_cxg
            ix_value_by_et[str(et)] = ix_value_by_cxg

        eval.save_content(
            {"signal_coverage": signal_coverage, "ix_coverage": ix_coverage_by_et, "noise": ix_value_by_et},
            outfix + filename + ".ixcovval")
Ejemplo n.º 3
0
def plot_data_gen(filename):
    cxgs = ["cxg_4/", "cxg_3/"]
    for cxg_select in cxgs:
        ewfix = "sameseed/ew/" + cxg_select
        outfix = "sameseed/plot/app3/" + cxg_select
        outfile = infile = filename

        start = time.time()

        mysas = SAS()
        mysas.import_states(ewfix + infile)

        # Total Bandwidth
        Total_BandWidth = len(mysas.channels) * 10.0

        # Total CxG
        cxg_nums = {cbsd.CxG for cbsd in mysas.CBSDs}

        bw_content = {}
        for et in ets:
            # Max Bandwidth Assigned to each CBSD
            assignment = mysas.get_approach_3(et)
            bw_max_per_cbsd = {
                key: Total_BandWidth / val[0]
                for key, val in assignment.items()
            }

            tmp = {
                "CxG_" + str(cxg_num): np.mean([
                    val for key, val in bw_max_per_cbsd.items() if key in
                    {cbsd.id
                     for cbsd in mysas.CBSDs if cbsd.CxG == cxg_num}
                ])
                for cxg_num in cxg_nums
            }

            bw_content[str(et)] = tmp

        # print bw_content
        eval.save_content(bw_content, outfix + outfile + "_app3.cxgbw")
        stop = time.time()

        print infile, cxg_select, "ready! in", "{0:.4f}".format(
            stop - start), "seconds"
Ejemplo n.º 4
0
def plot_data_gen(filename):
    ewfix = gcfix = "experiment/multi/gc/"
    outfix = "experiment/multi/plotdata/"

    outfile = infile = filename

    start = time.time()

    mysas = SAS()
    mysas.import_states(ewfix + infile)
    mysas.import_cs(gcfix + infile)
    mysas.assign_channels()

    data_bw = eval.get_plotdata_bandwidth(mysas)
    data_ix = eval.get_plotdata_interference(mysas)

    eval.save_content(data_bw, outfix + outfile + ".bwcdf")
    eval.save_content(data_ix, outfix + outfile + ".ixcdf")

    stop = time.time()

    print infile, "ready! in", "{0:.4f}".format(stop-start), "seconds"
Ejemplo n.º 5
0
def plot_data_gen(filename):
    cxgs = ["cxg_4/", "cxg_3/"]
    for cxg_select in cxgs:
        ewfix = "sameseed/ew/" + cxg_select
        outfix = "sameseed/plot/app3/" + cxg_select
        outfile = infile = filename

        start = time.time()

        mysas = SAS()
        mysas.import_states(ewfix + infile)

        potential_pairs_list = {et: mysas.get_approach_3(et) for et in ets}

        cxg_nums = {cbsd.CxG for cbsd in mysas.CBSDs}

        coverage = {}
        noises = {}
        for cxg_num in cxg_nums:
            noises_cxg = {}
            # find the coverage of all CBSDs in the CxG
            grids_covered = {
                key
                for cbsd in mysas.CBSDs if cbsd.CxG == cxg_num
                for key, val in cbsd.coverage.items() if val >= min_rx
            }

            coverage["CxG_" + str(cxg_num)] = list(grids_covered)

            # for each grid, find the CBSDs cover and interfere it
            for grid_id in grids_covered:
                noises_grid = {}
                cbsds_in_cxg = {
                    cbsd
                    for cbsd in mysas.CBSDs if cbsd.CxG == cxg_num
                    and cbsd.coverage.get(grid_id) >= min_rx
                }
                cbsds_out_cxg = {
                    cbsd
                    for cbsd in mysas.CBSDs if cbsd.CxG != cxg_num
                    and cbsd.coverage.get(grid_id) >= min_rx
                }

                # under each edge threshold
                for et in ets:
                    noise_et = {}
                    potential_pairs = potential_pairs_list[
                        et]  # {cbsd: (cluster_size, neighbors)}

                    for cbsd_out in cbsds_out_cxg:
                        # mark cbsd_out if has potential edges with any of the CBSD in the CxG
                        if any([
                                cbsd_out.id
                                in potential_pairs.get(cbsd_in.id)[1]
                                for cbsd_in in cbsds_in_cxg
                        ]):
                            noise_et[cbsd_out.id] = cbsd_out.coverage.get(
                                grid_id)

                    if len(noise_et) > 0:
                        noise_et["all"] = eval.get_per_unit_dbm(
                            noise_et.values())  # Aggregated
                        noises_grid[str(et)] = noise_et
                if len(noises_grid) > 0:
                    noises_cxg[str(grid_id)] = noises_grid

            noises["CxG_" +
                   str(cxg_num)] = noises_cxg if len(noises_cxg) > 0 else None

        eval.save_content(
            {
                "noise": noises,
                "coverage": coverage,
                "grid": mysas.grids
            }, outfix + outfile + "_app3.noise")
        stop = time.time()

        print infile, cxg_select, "ready! in", "{0:.4f}".format(
            stop - start), "seconds"
Ejemplo n.º 6
0
def plot_data_gen(filename):
    cxgs = ["cxg_4/"]
    for cxg_select in cxgs:
        ewfix = "sameseed/repeat/ew/" + cxg_select
        outfix = "sameseed/repeat/plot/app3/" + cxg_select
        outfile = infile = filename

        mysas = SAS()
        mysas.import_states(ewfix + infile)

        # Total Bandwidth
        Total_BandWidth = len(mysas.channels) * 10.0

        # Total CxG
        cxg_nums = {cbsd.CxG for cbsd in mysas.CBSDs}

        bw_content = {}
        for et in ets:
            # Max Bandwidth Assigned to each CBSD
            assignment = mysas.get_approach_3(et)
            bw_max_per_cbsd = {key: Total_BandWidth / val[0] for key, val in assignment.items()}

            tmp = {"CxG_" + str(cxg_num): np.mean([val for key, val in bw_max_per_cbsd.items()
                                                   if key in {cbsd.id for cbsd in mysas.CBSDs if cbsd.CxG == cxg_num}])
                   for cxg_num in cxg_nums}

            bw_content[str(et)] = tmp

        # print bw_content
        eval.save_content(bw_content, outfix + outfile + "_app3.cxgbw")
        print "bandwidth ready"


        potential_pairs_list = {et: mysas.get_approach_3(et) for et in ets}

        cxg_nums = {cbsd.CxG for cbsd in mysas.CBSDs}

        coverage = {}
        noises = {}
        for cxg_num in cxg_nums:
            noises_cxg = {}
            # find the coverage of all CBSDs in the CxG
            grids_covered = {key for cbsd in mysas.CBSDs if cbsd.CxG == cxg_num
                             for key, val in cbsd.coverage.items() if val >= min_rx}

            coverage["CxG_"+str(cxg_num)] = list(grids_covered)

            # for each grid, find the CBSDs cover and interfere it
            for grid_id in grids_covered:
                noises_grid = {}
                cbsds_in_cxg = {cbsd for cbsd in mysas.CBSDs if cbsd.CxG == cxg_num and cbsd.coverage.get(grid_id) >= min_rx}
                cbsds_out_cxg = {cbsd for cbsd in mysas.CBSDs if cbsd.CxG != cxg_num and cbsd.coverage.get(grid_id) >= min_rx}

                # under each edge threshold
                for et in ets:
                    noise_et = {}
                    potential_pairs = potential_pairs_list[et]      # {cbsd: (cluster_size, neighbors)}

                    for cbsd_out in cbsds_out_cxg:
                        # mark cbsd_out if has potential edges with any of the CBSD in the CxG
                        if any([cbsd_out.id in potential_pairs.get(cbsd_in.id)[1] for cbsd_in in cbsds_in_cxg]):
                            noise_et[cbsd_out.id] = cbsd_out.coverage.get(grid_id)

                    if len(noise_et) > 0:
                        noise_et["all"] = eval.get_per_unit_dbm(noise_et.values())      # Aggregated
                        noises_grid[str(et)] = noise_et
                if len(noises_grid) > 0:
                    noises_cxg[str(grid_id)] = noises_grid

            noises["CxG_"+str(cxg_num)] = noises_cxg if len(noises_cxg) > 0 else None

        eval.save_content({"noise": noises, "coverage": coverage, "grid": mysas.grids}, outfix + outfile + "_app3.noise")
        print "noise ready"