Ejemplo n.º 1
0
def GAEembedding(z, adj, args):
    '''
    GAE embedding for clustering
    Param:
        z,adj
    Return:
        Embedding from graph
    '''
    # true_labels = np.asarray(true_labels)

    # args.model = 'gcn_vae'
    # args.dw    = 0
    # args.epochs = 200
    # args.hidden1 = 32
    # args.hidden2 = 16
    # args.lr      = 0.01
    # args.dropout = 0.
    # args.dataset_sr = 'cora'
    # args.walk_length = 5
    # args.window_size = 3
    # args.number_walks = 5
    # args.full_number_walks =0
    # args.lr_dw   = 0.001
    # args.context = 0
    # args.ns = 1
    # args.n_clusters = 11
    # args.plot = 0

    # featrues from z
    # Louvain
    features = z
    # features = torch.DoubleTensor(features)
    features = torch.FloatTensor(features)

    # Old implementation
    # adj, features, y_test, tx, ty, test_maks, true_labels = load_data(args.dataset_str)

    n_nodes, feat_dim = features.shape

    # Store original adjacency matrix (without diagonal entries) for later
    adj_orig = adj
    adj_orig = adj_orig - sp.dia_matrix(
        (adj_orig.diagonal()[np.newaxis, :], [0]), shape=adj_orig.shape)
    adj_orig.eliminate_zeros()

    adj_train, train_edges, val_edges, val_edges_false, test_edges, test_edges_false = mask_test_edges(
        adj)
    adj = adj_train

    # Before proceeding further, make the structure for doing deepWalk
    # if args.dw == 1:
    #     print('Using deepWalk regularization...')
    #     G = load_edgelist_from_csr_matrix(adj_orig, undirected=True)
    #     print("Number of nodes: {}".format(len(G.nodes())))
    #     num_walks = len(G.nodes()) * args.number_walks
    #     print("Number of walks: {}".format(num_walks))
    #     data_size = num_walks * args.walk_length
    #     print("Data size (walks*length): {}".format(data_size))

    # Some preprocessing
    adj_norm = preprocess_graph(adj)
    adj_label = adj_train + sp.eye(adj_train.shape[0])
    # adj_label = sparse_to_tuple(adj_label)
    # adj_label = torch.DoubleTensor(adj_label.toarray())
    adj_label = torch.FloatTensor(adj_label.toarray())

    pos_weight = float(adj.shape[0] * adj.shape[0] - adj.sum()) / adj.sum()
    norm = adj.shape[0] * adj.shape[0] / float(
        (adj.shape[0] * adj.shape[0] - adj.sum()) * 2)

    if args.GAEmodel == 'gcn_vae':
        model = GCNModelVAE(feat_dim, args.GAEhidden1, args.GAEhidden2,
                            args.GAEdropout)
    else:
        model = GCNModelAE(feat_dim, args.GAEhidden1, args.GAEhidden2,
                           args.GAEdropout)
    if args.precisionModel == 'Double':
        model = model.double()
    optimizer = optim.Adam(model.parameters(), lr=args.GAElr)

    # if args.dw == 1:
    #     sg = SkipGram(args.hidden2, adj.shape[0])
    #     optimizer_dw = optim.Adam(sg.parameters(), lr=args.lr_dw)

    #     # Construct the nodes for doing random walk. Doing it before since the seed is fixed
    #     nodes_in_G = list(G.nodes())
    #     chunks = len(nodes_in_G) // args.number_walks
    #     random.Random().shuffle(nodes_in_G)

    hidden_emb = None
    for epoch in tqdm(range(args.GAEepochs)):
        t = time.time()
        # mem=resource.getrusage(resource.RUSAGE_SELF).ru_maxrss
        # print('Mem consumption before training: '+str(mem))
        model.train()
        optimizer.zero_grad()
        z, mu, logvar = model(features, adj_norm)

        # After back-propagating gae loss, now do the deepWalk regularization
        # if args.dw == 1:
        #     sg.train()
        #     if args.full_number_walks > 0:
        #         walks = build_deepwalk_corpus(G, num_paths=args.full_number_walks,
        #                                       path_length=args.walk_length, alpha=0,
        #                                       rand=random.Random(SEED))
        #     else:
        #         walks = build_deepwalk_corpus_iter(G, num_paths=args.number_walks,
        #                                            path_length=args.walk_length, alpha=0,
        #                                            rand=random.Random(SEED),
        #                                            chunk=epoch % chunks,
        #                                            nodes=nodes_in_G)
        #     for walk in walks:
        #         if args.context == 1:
        #             # Construct the pairs for predicting context node
        #             # for each node, treated as center word
        #             curr_pair = (int(walk[center_node_pos]), [])
        #             for center_node_pos in range(len(walk)):
        #                 # for each window position
        #                 for w in range(-args.window_size, args.window_size + 1):
        #                     context_node_pos = center_node_pos + w
        #                     # make soure not jump out sentence
        #                     if context_node_pos < 0 or context_node_pos >= len(walk) or center_node_pos == context_node_pos:
        #                         continue
        #                     context_node_idx = walk[context_node_pos]
        #                     curr_pair[1].append(int(context_node_idx))
        #         else:
        #             # first item in the walk is the starting node
        #             curr_pair = (int(walk[0]), [int(context_node_idx) for context_node_idx in walk[1:]])

        #         if args.ns == 1:
        #             neg_nodes = []
        #             pos_nodes = set(walk)
        #             while len(neg_nodes) < args.walk_length - 1:
        #                 rand_node = random.randint(0, n_nodes - 1)
        #                 if rand_node not in pos_nodes:
        #                     neg_nodes.append(rand_node)
        #             neg_nodes = torch.from_numpy(np.array(neg_nodes)).long()

        #         # Do actual prediction
        #         src_node = torch.from_numpy(np.array([curr_pair[0]])).long()
        #         tgt_nodes = torch.from_numpy(np.array(curr_pair[1])).long()
        #         optimizer_dw.zero_grad()
        #         log_pos = sg(src_node, tgt_nodes, neg_sample=False)
        #         if args.ns == 1:
        #             loss_neg = sg(src_node, neg_nodes, neg_sample=True)
        #             loss_dw = log_pos + loss_neg
        #         else:
        #             loss_dw = log_pos
        #         loss_dw.backward(retain_graph=True)
        #         cur_dw_loss = loss_dw.item()
        #         optimizer_dw.step()

        loss = loss_function(preds=model.dc(z),
                             labels=adj_label,
                             mu=mu,
                             logvar=logvar,
                             n_nodes=n_nodes,
                             norm=norm,
                             pos_weight=pos_weight)
        loss.backward()
        cur_loss = loss.item()
        optimizer.step()

        hidden_emb = mu.data.numpy()
        # TODO, this is prediction
        # roc_curr, ap_curr = get_roc_score(hidden_emb, adj_orig, val_edges, val_edges_false)
        ap_curr = 0

        # if args.dw == 1:
        #     tqdm.write("Epoch: {}, train_loss_gae={:.5f}, train_loss_dw={:.5f}, val_ap={:.5f}, time={:.5f}".format(
        #         epoch + 1, cur_loss, cur_dw_loss,
        #         ap_curr, time.time() - t))
        # else:
        tqdm.write(
            "Epoch: {}, train_loss_gae={:.5f}, val_ap={:.5f}, time={:.5f}".
            format(epoch + 1, cur_loss, ap_curr,
                   time.time() - t))

        # if (epoch + 1) % 10 == 0:
        #     tqdm.write("Evaluating intermediate results...")
        #     kmeans = KMeans(n_clusters=args.n_clusters, random_state=0).fit(hidden_emb)
        #     predict_labels = kmeans.predict(hidden_emb)
        #     cm = clustering_metrics(true_labels, predict_labels)
        #     cm.evaluationClusterModelFromLabel(tqdm)
        #     roc_score, ap_score = get_roc_score(hidden_emb, adj_orig, test_edges, test_edges_false)
        #     tqdm.write('ROC: {}, AP: {}'.format(roc_score, ap_score))
        #     np.save('logs/emb_epoch_{}.npy'.format(epoch + 1), hidden_emb)

    tqdm.write("Optimization Finished!")

    roc_score, ap_score = get_roc_score(hidden_emb, adj_orig, test_edges,
                                        test_edges_false)
    tqdm.write('Test ROC score: ' + str(roc_score))
    tqdm.write('Test AP score: ' + str(ap_score))
    # kmeans = KMeans(n_clusters=args.n_clusters, random_state=0).fit(hidden_emb)
    # predict_labels = kmeans.predict(hidden_emb)
    # cm = clustering_metrics(true_labels, predict_labels)
    # cm.evaluationClusterModelFromLabel(tqdm)

    # if args.GAEplot == 1:
    #     cm.plotClusters(tqdm, hidden_emb, true_labels)

    return hidden_emb
Ejemplo n.º 2
0
def GAEembedding(z, adj, args):
    '''
    GAE embedding for clustering
    Param:
        z,adj
    Return:
        Embedding from graph
    '''
    # featrues from z
    # Louvain
    features = z
    # features = torch.DoubleTensor(features)
    features = torch.FloatTensor(features)

    # Old implementation
    # adj, features, y_test, tx, ty, test_maks, true_labels = load_data(args.dataset_str)

    n_nodes, feat_dim = features.shape

    # Store original adjacency matrix (without diagonal entries) for later
    adj_orig = adj
    adj_orig = adj_orig - sp.dia_matrix(
        (adj_orig.diagonal()[np.newaxis, :], [0]), shape=adj_orig.shape)
    adj_orig.eliminate_zeros()

    adj_train, train_edges, val_edges, val_edges_false, test_edges, test_edges_false = mask_test_edges(
        adj)
    adj = adj_train

    # Some preprocessing
    adj_norm = preprocess_graph(adj)
    adj_label = adj_train + sp.eye(adj_train.shape[0])
    # adj_label = sparse_to_tuple(adj_label)
    # adj_label = torch.DoubleTensor(adj_label.toarray())
    adj_label = torch.FloatTensor(adj_label.toarray())

    pos_weight = float(adj.shape[0] * adj.shape[0] - adj.sum()) / adj.sum()
    norm = adj.shape[0] * adj.shape[0] / float(
        (adj.shape[0] * adj.shape[0] - adj.sum()) * 2)

    if args.GAEmodel == 'gcn_vae':
        model = GCNModelVAE(feat_dim, args.GAEhidden1, args.GAEhidden2,
                            args.GAEdropout)
    else:
        model = GCNModelAE(feat_dim, args.GAEhidden1, args.GAEhidden2,
                           args.GAEdropout)
    if args.precisionModel == 'Double':
        model = model.double()
    optimizer = optim.Adam(model.parameters(), lr=args.GAElr)

    hidden_emb = None
    for epoch in tqdm(range(args.GAEepochs)):
        t = time.time()
        # mem=resource.getrusage(resource.RUSAGE_SELF).ru_maxrss
        # print('Mem consumption before training: '+str(mem))
        model.train()
        optimizer.zero_grad()
        z, mu, logvar = model(features, adj_norm)

        loss = loss_function(preds=model.dc(z),
                             labels=adj_label,
                             mu=mu,
                             logvar=logvar,
                             n_nodes=n_nodes,
                             norm=norm,
                             pos_weight=pos_weight)
        loss.backward()
        cur_loss = loss.item()
        optimizer.step()

        hidden_emb = mu.data.numpy()
        # TODO, this is prediction
        # roc_curr, ap_curr = get_roc_score(hidden_emb, adj_orig, val_edges, val_edges_false)
        ap_curr = 0

        tqdm.write(
            "Epoch: {}, train_loss_gae={:.5f}, val_ap={:.5f}, time={:.5f}".
            format(epoch + 1, cur_loss, ap_curr,
                   time.time() - t))

    tqdm.write("Optimization Finished!")

    roc_score, ap_score = get_roc_score(hidden_emb, adj_orig, test_edges,
                                        test_edges_false)
    tqdm.write('Test ROC score: ' + str(roc_score))
    tqdm.write('Test AP score: ' + str(ap_score))

    return hidden_emb