Ejemplo n.º 1
0
def pdos_from_files(return_plt=False, **kwargs):
    """Read input data, process for PDOS before plotting and/or writing

    Args:
        return_plt (bool): If True, return the pyplot object instead of writing
            or displaying plot output.
        **kwargs: See command reference for full argument list

    """
    pdos_plotting_data = galore.process_pdos(**kwargs)

    # For plotting and writing, "None" means "write to screen"
    # while False means "do nothing"
    if kwargs['plot'] or kwargs['plot'] is None:
        if 'style' in kwargs and kwargs['style'] is not None:
            import matplotlib.pyplot
            matplotlib.pyplot.style.use(kwargs['style'])
        plt = galore.plot.plot_pdos(pdos_plotting_data,
                                    **kwargs)  # flipx is included in kwargs

        if kwargs['overlay'] is not None:
            plt = galore.plot.add_overlay(
                plt,
                kwargs['overlay'],
                overlay_offset=kwargs['overlay_offset'],
                overlay_scale=kwargs['overlay_scale'],
                overlay_style=kwargs['overlay_style'],
                overlay_label=kwargs['overlay_label'])
            plt.legend(loc='best')

        xlabel = galore.plot.guess_xlabel(units=kwargs['units'],
                                          flipx=kwargs['flipx'],
                                          energy_label=None)
        plt.xlabel(xlabel)

        if kwargs['ylabel'] is not None:
            plt.ylabel(kwargs['ylabel'])

        if return_plt:
            return plt
        elif kwargs['plot']:
            plt.savefig(kwargs['plot'])
        elif kwargs['plot'] is None:
            plt.show()

    if kwargs['csv'] or kwargs['csv'] is None:
        galore.formats.write_pdos(pdos_plotting_data,
                                  filename=kwargs['csv'],
                                  filetype='csv',
                                  flipx=kwargs['flipx'])

    if kwargs['txt'] or kwargs['txt'] is None:
        galore.formats.write_pdos(pdos_plotting_data,
                                  filename=kwargs['txt'],
                                  filetype='txt',
                                  flipx=kwargs['flipx'])
Ejemplo n.º 2
0
import galore
import galore.plot

vasprun = 'test/SnO2/vasprun.xml.gz'
xmin, xmax = (-10, 4)

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)

weightings = ('He2', 'Alka', 'Yeh_HAXPES')

for i, weighting in enumerate(weightings):

    plotting_data = galore.process_pdos(input=[vasprun],
                                        gaussian=0.3,
                                        lorentzian=0.2,
                                        xmin=xmin,
                                        xmax=xmax,
                                        weighting=weighting)
    galore.plot.plot_pdos(plotting_data,
                          ax=ax,
                          show_orbitals=False,
                          units='eV',
                          xmin=-xmin,
                          xmax=-xmax,
                          flipx=True)

    line = ax.lines[-1]
    line.set_label(weighting)
    line.set_color(cmap(i / len(weightings)))

    ymax = max(line.get_ydata())
Ejemplo n.º 3
0
#! /usr/bin/env python3

import numpy as np
import matplotlib.pyplot as plt
import galore
import galore.plot

vasprun = './test/MgO/vasprun.xml.gz'
xmin, xmax = (-10, 2)

fig = plt.figure()

for i, l in enumerate(np.arange(0.05, 0.50, 0.05)):
    ax = fig.add_subplot(3, 3, i + 1)
    ax.set_title("$\gamma = {0:4.2f}$".format(l))
    plotting_data = galore.process_pdos(input=[vasprun], lorentzian=l,
                                        xmin=xmin, xmax=xmax)
    galore.plot.plot_pdos(plotting_data, ax=ax)
    ax.legend().set_visible(False)

fig.tight_layout()
plt.show()
Ejemplo n.º 4
0
ax3.set_xlim(xlim)
ax3.legend().remove()

## Fix consistent colors
for line in ax3.lines:
    line.set_color(line_colors[line.get_label()])
    line.set_linestyle('-')

# Summed PDOS
ax4 = fig.add_subplot(1, 5, 4, sharey=ax3)
galore.plot.plot_pdos(weighted_data, ax=ax4, total=True, show_orbitals=False)
ax4.set_title("Sum")
ax4.set_xlim(xlim)
ax4.set_ylim(new_ylim)
ax4.legend().remove()

# Broadened output
ax5 = fig.add_subplot(1, 5, 5)
broadened_data = galore.process_pdos(input='test/MgO/vasprun.xml.gz',
                                     gaussian=0.5,
                                     weighting=weighting)

galore.plot.plot_pdos(broadened_data, ax=ax5, total=True, show_orbitals=False)
ax5.set_title("Broaden")
ax5.set_xlim(xlim)
ax5.set_ylim(final_ylim)
ax5.legend().remove()

fig.subplots_adjust(left=0.03, right=0.98, top=0.78)
fig.savefig('docs/source/figures/pe_schematic.pdf')