Ejemplo n.º 1
0
def _GenerateFromRandomGamma(config, base, value_type):
    """@brief Return a random value drawn from a Gamma distribution
    """
    rng = galsim.config.GetRNG(config, base)

    req = { 'k' : float, 'theta' : float }
    kwargs, safe = galsim.config.GetAllParams(config, base, req=req)

    k = kwargs['k']
    theta = kwargs['theta']
    dev = galsim.GammaDeviate(rng,k=k,theta=theta)
    val = dev()

    #print(base['obj_num'],'RandomGamma: ',val)
    return val, False
Ejemplo n.º 2
0
def _GenerateFromRandomGamma(param, param_name, base, value_type):
    """@brief Return a random value drawn from a Gamma distribution
    """
    if 'rng' not in base:
        raise ValueError("No base['rng'] available for %s.type = RandomGamma"%param_name)
    rng = base['rng']

    req = { 'k' : float, 'theta' : float }
    kwargs, safe = GetAllParams(param, param_name, base, req=req)

    k = kwargs['k']
    theta = kwargs['theta']
    dev = galsim.GammaDeviate(rng,k=k,theta=theta)
    val = dev()

    #print base['obj_num'],'RandomGamma: ',val
    return val, False
Ejemplo n.º 3
0
def test_float_value():
    """Test various ways to generate a float value
    """
    import time
    t1 = time.time()

    config = {
        'input': {
            'catalog': [{
                'dir': 'config_input',
                'file_name': 'catalog.txt'
            }, {
                'dir': 'config_input',
                'file_name': 'catalog.fits'
            }],
            'dict': [{
                'dir': 'config_input',
                'file_name': 'dict.p'
            }, {
                'dir': 'config_input',
                'file_name': 'dict.json'
            }, {
                'dir': 'config_input',
                'file_name': 'dict.yaml'
            }]
        },
        'val1': 9.9,
        'val2': int(400),
        'str1': '8.73',
        'str2': '2.33e-9',
        'str3': '6.e-9',
        'cat1': {
            'type': 'Catalog',
            'col': 0
        },
        'cat2': {
            'type': 'Catalog',
            'col': 1
        },
        'cat3': {
            'type': 'Catalog',
            'num': 1,
            'col': 'float1'
        },
        'cat4': {
            'type': 'Catalog',
            'num': 1,
            'col': 'float2'
        },
        'ran1': {
            'type': 'Random',
            'min': 0.5,
            'max': 3
        },
        'ran2': {
            'type': 'Random',
            'min': -5,
            'max': 0
        },
        'gauss1': {
            'type': 'RandomGaussian',
            'sigma': 1
        },
        'gauss2': {
            'type': 'RandomGaussian',
            'sigma': 3,
            'mean': 4
        },
        'gauss3': {
            'type': 'RandomGaussian',
            'sigma': 1.5,
            'min': -2,
            'max': 2
        },
        'gauss4': {
            'type': 'RandomGaussian',
            'sigma': 0.5,
            'min': 0,
            'max': 0.8
        },
        'gauss5': {
            'type': 'RandomGaussian',
            'sigma': 0.3,
            'mean': 0.5,
            'min': 0,
            'max': 0.5
        },
        'dist1': {
            'type': 'RandomDistribution',
            'function': 'config_input/distribution.txt',
            'interpolant': 'linear'
        },
        'dist2': {
            'type': 'RandomDistribution',
            'function': 'config_input/distribution2.txt',
            'interpolant': 'linear'
        },
        'dist3': {
            'type': 'RandomDistribution',
            'function': 'x*x',
            'x_min': 0.,
            'x_max': 2.0
        },
        'dev1': {
            'type': 'RandomPoisson',
            'mean': 137
        },
        'dev2': {
            'type': 'RandomBinomial',
            'N': 17
        },
        'dev3': {
            'type': 'RandomBinomial',
            'N': 17,
            'p': 0.2
        },
        'dev4': {
            'type': 'RandomWeibull',
            'a': 1.7,
            'b': 4.3
        },
        'dev5': {
            'type': 'RandomGamma',
            'k': 1,
            'theta': 4
        },
        'dev6': {
            'type': 'RandomGamma',
            'k': 1.9,
            'theta': 4.1
        },
        'dev7': {
            'type': 'RandomChi2',
            'n': 17
        },
        'seq1': {
            'type': 'Sequence'
        },
        'seq2': {
            'type': 'Sequence',
            'step': 0.1
        },
        'seq3': {
            'type': 'Sequence',
            'first': 1.5,
            'step': 0.5
        },
        'seq4': {
            'type': 'Sequence',
            'first': 10,
            'step': -2
        },
        'seq5': {
            'type': 'Sequence',
            'first': 1,
            'last': 2.1,
            'repeat': 2
        },
        'list1': {
            'type': 'List',
            'items': [73, 8.9, 3.14]
        },
        'list2': {
            'type': 'List',
            'items':
            [0.6, 1.8, 2.1, 3.7, 4.3, 5.5, 6.1, 7.0, 8.6, 9.3, 10.8, 11.2],
            'index': {
                'type': 'Sequence',
                'first': 10,
                'step': -3
            }
        },
        'dict1': {
            'type': 'Dict',
            'key': 'f'
        },
        'dict2': {
            'type': 'Dict',
            'num': 1,
            'key': 'f'
        },
        'dict3': {
            'type': 'Dict',
            'num': 2,
            'key': 'f'
        },
        'dict4': {
            'type': 'Dict',
            'num': 2,
            'key': 'noise.models.1.gain'
        },
        'sum1': {
            'type': 'Sum',
            'items': [72, '2.33', {
                'type': 'Dict',
                'key': 'f'
            }]
        }
    }

    test_yaml = True
    try:
        galsim.config.ProcessInput(config)
    except:
        # We don't require PyYAML as a dependency, so if this fails, just remove the YAML dict.
        del config['input']['dict'][2]
        galsim.config.ProcessInput(config)
        test_yaml = False

    # Test direct values
    val1 = galsim.config.ParseValue(config, 'val1', config, float)[0]
    np.testing.assert_almost_equal(val1, 9.9)

    val2 = galsim.config.ParseValue(config, 'val2', config, float)[0]
    np.testing.assert_almost_equal(val2, 400)

    # Test conversions from strings
    str1 = galsim.config.ParseValue(config, 'str1', config, float)[0]
    np.testing.assert_almost_equal(str1, 8.73)

    str2 = galsim.config.ParseValue(config, 'str2', config, float)[0]
    np.testing.assert_almost_equal(str2, 2.33e-9)

    str3 = galsim.config.ParseValue(config, 'str3', config, float)[0]
    np.testing.assert_almost_equal(str3, 6.0e-9)

    # Test values read from a Catalog
    cat1 = []
    cat2 = []
    cat3 = []
    cat4 = []
    config['index_key'] = 'file_num'
    for k in range(5):
        config['file_num'] = k
        cat1.append(galsim.config.ParseValue(config, 'cat1', config, float)[0])
        cat2.append(galsim.config.ParseValue(config, 'cat2', config, float)[0])
        cat3.append(galsim.config.ParseValue(config, 'cat3', config, float)[0])
        cat4.append(galsim.config.ParseValue(config, 'cat4', config, float)[0])

    np.testing.assert_array_almost_equal(cat1,
                                         [1.234, 2.345, 3.456, 1.234, 2.345])
    np.testing.assert_array_almost_equal(cat2,
                                         [4.131, -900, 8000, 4.131, -900])
    np.testing.assert_array_almost_equal(cat3,
                                         [1.234, 2.345, 3.456, 1.234, 2.345])
    np.testing.assert_array_almost_equal(cat4,
                                         [4.131, -900, 8000, 4.131, -900])

    # Test values generated from a uniform deviate
    rng = galsim.UniformDeviate(1234)
    config['rng'] = galsim.UniformDeviate(
        1234)  # A second copy starting with the same seed.
    for k in range(6):
        config[
            'obj_num'] = k  # The Random type doesn't use obj_num, but this keeps it
        # from thinking current_val is still current.
        ran1 = galsim.config.ParseValue(config, 'ran1', config, float)[0]
        np.testing.assert_almost_equal(ran1, rng() * 2.5 + 0.5)

        ran2 = galsim.config.ParseValue(config, 'ran2', config, float)[0]
        np.testing.assert_almost_equal(ran2, rng() * 5 - 5)

    # Test values generated from a Gaussian deviate
    for k in range(6):
        config['obj_num'] = k
        gauss1 = galsim.config.ParseValue(config, 'gauss1', config, float)[0]
        gd = galsim.GaussianDeviate(rng, mean=0, sigma=1)
        np.testing.assert_almost_equal(gauss1, gd())

        gauss2 = galsim.config.ParseValue(config, 'gauss2', config, float)[0]
        gd = galsim.GaussianDeviate(rng, mean=4, sigma=3)
        np.testing.assert_almost_equal(gauss2, gd())

        gauss3 = galsim.config.ParseValue(config, 'gauss3', config, float)[0]
        gd = galsim.GaussianDeviate(rng, mean=0, sigma=1.5)
        gd_val = gd()
        while math.fabs(gd_val) > 2:
            gd_val = gd()
        np.testing.assert_almost_equal(gauss3, gd_val)

        gauss4 = galsim.config.ParseValue(config, 'gauss4', config, float)[0]
        gd = galsim.GaussianDeviate(rng, mean=0, sigma=0.5)
        gd_val = math.fabs(gd())
        while gd_val > 0.8:
            gd_val = math.fabs(gd())
        np.testing.assert_almost_equal(gauss4, gd_val)

        gauss5 = galsim.config.ParseValue(config, 'gauss5', config, float)[0]
        gd = galsim.GaussianDeviate(rng, mean=0.5, sigma=0.3)
        gd_val = gd()
        if gd_val > 0.5:
            gd_val = 1 - gd_val
        while gd_val < 0:
            gd_val = gd()
            if gd_val > 0.5:
                gd_val = 1 - gd_val
        np.testing.assert_almost_equal(gauss5, gd_val)

    # Test values generated from a distribution in a file
    dd = galsim.DistDeviate(rng,
                            function='config_input/distribution.txt',
                            interpolant='linear')
    for k in range(6):
        config['obj_num'] = k
        dist1 = galsim.config.ParseValue(config, 'dist1', config, float)[0]
        np.testing.assert_almost_equal(dist1, dd())
    dd = galsim.DistDeviate(rng,
                            function='config_input/distribution2.txt',
                            interpolant='linear')
    for k in range(6):
        config['obj_num'] = k
        dist2 = galsim.config.ParseValue(config, 'dist2', config, float)[0]
        np.testing.assert_almost_equal(dist2, dd())
    dd = galsim.DistDeviate(rng, function=lambda x: x * x, x_min=0., x_max=2.)
    for k in range(6):
        config['obj_num'] = k
        dist3 = galsim.config.ParseValue(config, 'dist3', config, float)[0]
        np.testing.assert_almost_equal(dist3, dd())

    # Test values generated from various other deviates
    for k in range(6):
        config['obj_num'] = k
        dev = galsim.PoissonDeviate(rng, mean=137)
        dev1 = galsim.config.ParseValue(config, 'dev1', config, float)[0]
        np.testing.assert_almost_equal(dev1, dev())

        dev = galsim.BinomialDeviate(rng, N=17)
        dev2 = galsim.config.ParseValue(config, 'dev2', config, float)[0]
        np.testing.assert_almost_equal(dev2, dev())

        dev = galsim.BinomialDeviate(rng, N=17, p=0.2)
        dev3 = galsim.config.ParseValue(config, 'dev3', config, float)[0]
        np.testing.assert_almost_equal(dev3, dev())

        dev = galsim.WeibullDeviate(rng, a=1.7, b=4.3)
        dev4 = galsim.config.ParseValue(config, 'dev4', config, float)[0]
        np.testing.assert_almost_equal(dev4, dev())

        dev = galsim.GammaDeviate(rng, k=1, theta=4)
        dev5 = galsim.config.ParseValue(config, 'dev5', config, float)[0]
        np.testing.assert_almost_equal(dev5, dev())

        dev = galsim.GammaDeviate(rng, k=1.9, theta=4.1)
        dev6 = galsim.config.ParseValue(config, 'dev6', config, float)[0]
        np.testing.assert_almost_equal(dev6, dev())

        dev = galsim.Chi2Deviate(rng, n=17)
        dev7 = galsim.config.ParseValue(config, 'dev7', config, float)[0]
        np.testing.assert_almost_equal(dev7, dev())

    # Test values generated from a Sequence
    seq1 = []
    seq2 = []
    seq3 = []
    seq4 = []
    seq5 = []
    config['index_key'] = 'file_num'
    for k in range(6):
        config['file_num'] = k
        seq1.append(galsim.config.ParseValue(config, 'seq1', config, float)[0])
    config['index_key'] = 'image_num'
    for k in range(6):
        config['image_num'] = k
        seq2.append(galsim.config.ParseValue(config, 'seq2', config, float)[0])
    config['index_key'] = 'obj_num'
    for k in range(6):
        config['obj_num'] = k
        seq3.append(galsim.config.ParseValue(config, 'seq3', config, float)[0])
    config['index_key'] = 'obj_num_in_file'
    config['start_obj_num'] = 10
    for k in range(6):
        config['obj_num'] = k + 10
        seq4.append(galsim.config.ParseValue(config, 'seq4', config, float)[0])
        seq5.append(galsim.config.ParseValue(config, 'seq5', config, float)[0])

    np.testing.assert_array_almost_equal(seq1, [0, 1, 2, 3, 4, 5])
    np.testing.assert_array_almost_equal(seq2, [0, 0.1, 0.2, 0.3, 0.4, 0.5])
    np.testing.assert_array_almost_equal(seq3, [1.5, 2, 2.5, 3, 3.5, 4])
    np.testing.assert_array_almost_equal(seq4, [10, 8, 6, 4, 2, 0])
    np.testing.assert_array_almost_equal(seq5, [1, 1, 2, 2, 1, 1])

    # Test values taken from a List
    list1 = []
    list2 = []
    config['index_key'] = 'obj_num'
    for k in range(5):
        config['obj_num'] = k
        list1.append(
            galsim.config.ParseValue(config, 'list1', config, float)[0])
        list2.append(
            galsim.config.ParseValue(config, 'list2', config, float)[0])

    np.testing.assert_array_almost_equal(list1, [73, 8.9, 3.14, 73, 8.9])
    np.testing.assert_array_almost_equal(list2, [10.8, 7.0, 4.3, 1.8, 10.8])

    # Test values read from a Dict
    dict = []
    dict.append(galsim.config.ParseValue(config, 'dict1', config, float)[0])
    dict.append(galsim.config.ParseValue(config, 'dict2', config, float)[0])
    if test_yaml:
        dict.append(
            galsim.config.ParseValue(config, 'dict3', config, float)[0])
        dict.append(
            galsim.config.ParseValue(config, 'dict4', config, float)[0])
    else:
        dict.append(0.1)
        dict.append(1.9)
    np.testing.assert_array_almost_equal(dict, [23.17, -17.23, 0.1, 1.9])

    sum1 = galsim.config.ParseValue(config, 'sum1', config, float)[0]
    np.testing.assert_almost_equal(sum1, 72 + 2.33 + 23.17)

    t2 = time.time()
    print 'time for %s = %.2f' % (funcname(), t2 - t1)
Ejemplo n.º 4
0
def test_dep_random():
    """Test the deprecated methods in galsim/deprecated/random.py
    """
    rng = galsim.BaseDeviate(123)

    gd = galsim.GaussianDeviate(rng, mean=0.5, sigma=1.7)
    np.testing.assert_almost_equal(gd.getMean(), 0.5)
    np.testing.assert_almost_equal(gd.getSigma(), 1.7)

    check_dep(gd.setMean, 0.9)
    np.testing.assert_almost_equal(gd.getMean(), 0.9)
    np.testing.assert_almost_equal(gd.getSigma(), 1.7)

    check_dep(gd.setSigma, 2.3)
    np.testing.assert_almost_equal(gd.getMean(), 0.9)
    np.testing.assert_almost_equal(gd.getSigma(), 2.3)

    bd = galsim.BinomialDeviate(rng, N=7, p=0.7)
    np.testing.assert_almost_equal(bd.getN(), 7)
    np.testing.assert_almost_equal(bd.getP(), 0.7)

    check_dep(bd.setN, 9)
    np.testing.assert_almost_equal(bd.getN(), 9)
    np.testing.assert_almost_equal(bd.getP(), 0.7)

    check_dep(bd.setP, 0.3)
    np.testing.assert_almost_equal(bd.getN(), 9)
    np.testing.assert_almost_equal(bd.getP(), 0.3)

    pd = galsim.PoissonDeviate(rng, mean=0.5)
    np.testing.assert_almost_equal(pd.getMean(), 0.5)

    check_dep(pd.setMean, 0.9)
    np.testing.assert_almost_equal(pd.getMean(), 0.9)

    wd = galsim.WeibullDeviate(rng, a=0.5, b=1.7)
    np.testing.assert_almost_equal(wd.getA(), 0.5)
    np.testing.assert_almost_equal(wd.getB(), 1.7)

    check_dep(wd.setA, 0.9)
    np.testing.assert_almost_equal(wd.getA(), 0.9)
    np.testing.assert_almost_equal(wd.getB(), 1.7)

    check_dep(wd.setB, 2.3)
    np.testing.assert_almost_equal(wd.getA(), 0.9)
    np.testing.assert_almost_equal(wd.getB(), 2.3)

    gd = galsim.GammaDeviate(rng, k=0.5, theta=1.7)
    np.testing.assert_almost_equal(gd.getK(), 0.5)
    np.testing.assert_almost_equal(gd.getTheta(), 1.7)

    check_dep(gd.setK, 0.9)
    np.testing.assert_almost_equal(gd.getK(), 0.9)
    np.testing.assert_almost_equal(gd.getTheta(), 1.7)

    check_dep(gd.setTheta, 2.3)
    np.testing.assert_almost_equal(gd.getK(), 0.9)
    np.testing.assert_almost_equal(gd.getTheta(), 2.3)

    cd = galsim.Chi2Deviate(rng, n=5)
    np.testing.assert_almost_equal(cd.getN(), 5)

    check_dep(cd.setN, 9)
    np.testing.assert_almost_equal(cd.getN(), 9)