Ejemplo n.º 1
0
def fight(ann, best, dump=False):
    board = game.getEmptyBoard()
    current = 'O'
    action = random.randint(0, game.BOARD_SIZE * game.BOARD_SIZE - 1)
    board, won = game.move(board, action, current)
    if dump:
        print(game.render(board))
    current = 'O' if current == 'X' else 'X'
    while True:
        entry = state_lists_to_batch([board], current)
        probs = best(entry)[0] if current == 'O' else ann(entry)[0]
        while True:
            action = np.argmax(probs)
            if action not in game.possible_moves(board):
                probs[action] = -np.inf
            else:
                break
        board, won = game.move(board, action, current)
        if dump:
            print(game.render(board))
        if len(game.possible_moves(board)) == 0:
            return None
        if won:
            break
        current = 'O' if current == 'X' else 'X'
    return best if current == 'O' else ann
Ejemplo n.º 2
0
def expectimax(game, depth, value_function):
    """ Searches the game tree down to given depth
        to find the maximum expected value of
        value_function. value_function takes the game
        at the leaf nodes and returns a number value.

        Returns tuple (value, move) with the expected value
        and the maximizing move.
    """

    # base case: reached depth
    if depth == 0:
        return value_function(game), 'null'

    possible = possible_moves(game)

    # base case: no more moves
    if not possible:
        return value_function(game), 'null'

    # get the possible outcomes of each possible move
    expanded = [(move, move_made_all(game, move)) for move in possible]

    move_value = []
    # calculate expected value of each possible move
    for move, games in expanded:
        value = sum(p * expectimax(g, depth - 1, value_function)[0] for p, g in games)
        move_value.append((value, move))

    return max(move_value)
Ejemplo n.º 3
0
def expectimax(game, depth, value_function):
    """ Searches the game tree down to given depth
        to find the maximum expected value of
        value_function. value_function takes the game
        at the leaf nodes and returns a number value.

        Returns tuple (value, move) with the expected value
        and the maximizing move.
    """

    # base case: reached depth
    if depth == 0:
        return value_function(game), 'null'

    possible = possible_moves(game)

    # base case: no more moves
    if not possible:
        return value_function(game), 'null'

    # get the possible outcomes of each possible move
    expanded = [(move, move_made_all(game, move)) for move in possible]

    move_value = []
    # calculate expected value of each possible move
    for move, games in expanded:
        value = sum(p * expectimax(g, depth - 1, value_function)[0]
                    for p, g in games)
        move_value.append((value, move))

    return max(move_value)
Ejemplo n.º 4
0
def get_move_randomly(active_player, board):
    piece_location_options = locations_of_pieces_with_valid_moves(
        active_player, board)
    if not piece_location_options:
        raise GameOver()
    location_of_piece_to_move = random.choice(piece_location_options)
    move_options = possible_moves(location_of_piece_to_move, active_player,
                                  board)
    return random.choice(move_options)
Ejemplo n.º 5
0
def get_move_from_stdin(active_player, board):
    piece_location_options = locations_of_pieces_with_valid_moves(
        active_player, board)
    if not piece_location_options:
        raise GameOver()
    location_of_piece_to_move = get_choice_from_stdin(piece_location_options,
                                                      pretty_location_str)
    move_options = possible_moves(location_of_piece_to_move, active_player,
                                  board)
    return get_choice_from_stdin(move_options, pretty_move_str)
Ejemplo n.º 6
0
def best_move_silvia(board):
    moves = possible_moves(board)
    move_std = dict(zip(moves, [0] * len(moves)))

    for move in moves:
        new_board, _ = move_made((board, 0), move)
        move_std[move] = get_neighbor_devsum(new_board)

    move = min(move_std, key=move_std.get)
    return move
Ejemplo n.º 7
0
def best_move_silvia(board):
    moves = possible_moves(board)
    move_std = dict(zip(moves, [0] * len(moves)))

    for move in moves:
        new_board, _ = move_made((board, 0), move)
        move_std[move] = get_neighbor_devsum(new_board)

    move = min(move_std, key=move_std.get)
    return move
Ejemplo n.º 8
0
def ai_mode(number_of_games=1):
    """ Just let the AI play a number of times
        without showing the UI.
    """

    scores = []

    for i in range(number_of_games):
        board, score = new_game(4)
        possible = possible_moves(board)

        while possible:
            move = game_ai.expectimax_move((board, score), 'gradient')
            score += make_move(board, move)
            possible = possible_moves(board)

        scores.append(score)
        print("Game {0}: Score = {1}".format(i+1, score))

    print()
    print("Mean score = " + str(sum(scores)/float(len(scores))))
Ejemplo n.º 9
0
def main(playmode):
    view = GameView()
    board, score = new_game(4)
    view.draw(board, score)
    clock = pygame.time.Clock()

    while True:
        clock.tick(20)  # limit fps

        redraw = False

        # get move from player
        for event in pygame.event.get():
            if event.type == QUIT:
                print("Exiting...")
                return

            if event.type == KEYDOWN and playmode:
                if event.key == K_LEFT:
                    score += make_move(board, 'left')
                    redraw = True
                if event.key == K_RIGHT:
                    score += make_move(board, 'right')
                    redraw = True
                if event.key == K_UP:
                    score += make_move(board, 'up')
                    redraw = True
                if event.key == K_DOWN:
                    score += make_move(board, 'down')
                    redraw = True

        if redraw:
            view.draw(board, score)

        # get move from ai
        if not playmode:
            best_move = game_ai.expectimax_move((board, score), 'gradient')
            # make the move and redraw
            score += make_move(board, best_move)
            view.draw(board, score)
            pygame.time.wait(0)

        # check if it is game over
        if len(possible_moves(board)) == 0:
            print("Game over! Score: " + str(score) + " Max square: " +
                  str(max_square(board)))
            print("Starting new game...\n")

            pygame.time.wait(3000)
            pygame.event.clear()

            board, score = new_game(4)
            view.draw(board, score)
Ejemplo n.º 10
0
def ai_mode(number_of_games=1):
    """ Just let the AI play a number of times
        without showing the UI.
    """

    scores = []

    for i in range(number_of_games):
        board, score = new_game(4)
        possible = possible_moves(board)

        while possible:
            move = game_ai.expectimax_move((board, score), 'gradient')
            score += make_move(board, move)
            possible = possible_moves(board)

        scores.append(score)
        print("Game {0}: Score = {1}".format(i + 1, score))

    print()
    print("Mean score = " + str(sum(scores) / float(len(scores))))
Ejemplo n.º 11
0
def main(playmode):
    view = GameView()    
    board, score = new_game(4)
    view.draw(board,score)
    clock = pygame.time.Clock()

    while True:
        clock.tick(20)  # limit fps

        redraw = False

        # get move from player
        for event in pygame.event.get():
            if event.type == QUIT:
                print("Exiting...")
                return

            if event.type == KEYDOWN and playmode:
                if event.key == K_LEFT:
                    score += make_move(board, 'left')
                    redraw = True
                if event.key == K_RIGHT:
                    score += make_move(board, 'right')
                    redraw = True
                if event.key == K_UP:
                    score += make_move(board, 'up')
                    redraw = True
                if event.key == K_DOWN:
                    score += make_move(board, 'down')
                    redraw = True
    
        if redraw:            
            view.draw(board, score)

        # get move from ai
        if not playmode:
            best_move = game_ai.expectimax_move((board, score), 'gradient')
            # make the move and redraw
            score += make_move(board, best_move)
            view.draw(board, score)
            pygame.time.wait(0)

        # check if it is game over
        if len(possible_moves(board)) == 0:
            print("Game over! Score: " + str(score) + " Max square: " + str(max_square(board)))
            print("Starting new game...\n")

            pygame.time.wait(3000)
            pygame.event.clear()

            board, score = new_game(4)
            view.draw(board, score)
Ejemplo n.º 12
0
def get_move_from_stdin_old_style(active_player, board):
    location_of_piece_to_move = None
    reason_cant_move = "Select a piece to move."
    while reason_cant_move:
        print(reason_cant_move)
        try:
            location_of_piece_to_move = parse_location_from_str(input("> "))
            reason_cant_move = reason_piece_at_location_cant_move(
                location_of_piece_to_move, active_player, board)
        except InvalidLocationString:
            reason_cant_move = "That's not a valid square. Try something like \"h6\"..."
    options = possible_moves(location_of_piece_to_move, active_player, board)
    return get_choice_from_stdin(options, pretty_move_str)
Ejemplo n.º 13
0
def max_score_search(game, depth, val):
    """ Simple AI that searches the game tree down
        a given depth and returns the maximum value
        of the leaf nodes at level depth. Value
        is given by the function val(game)

        Signature: game, int depth, function val => int score
    """
    if depth == 0:
        return val(game)

    new_games = [move_made(game, move) for move in possible_moves(game)]

    if len(new_games) == 0:
        return 0

    return max(max_score_search(g, depth - 1, val) for g in new_games)
Ejemplo n.º 14
0
def max_score_search(game, depth, val):
    """ Simple AI that searches the game tree down
        a given depth and returns the maximum value
        of the leaf nodes at level depth. Value
        is given by the function val(game)

        Signature: game, int depth, function val => int score
    """
    if depth == 0:
        return val(game)

    new_games = [move_made(game, move) for move in possible_moves(game)]

    if len(new_games) == 0:
        return 0

    return max(max_score_search(g, depth - 1, val) for g in new_games)
Ejemplo n.º 15
0
def best_move(game, method='score'):
    """
    val should be function game -> int
    """
    board, score = game

    if method == 'score':

        def val(g):
            return g[1]
    elif method == 'empty':
        val = empty_squares
    elif method == 'gradient':
        val = gradient_value
    else:
        print('Invalid method given to best_move function')
        exit(1)

    if score < 10000:
        depth = 4
    elif score < 20000:
        depth = 5
    elif score < 30000:
        depth = 7
    else:
        depth = 7

    moves = possible_moves(board)

    # dict with score for each move
    move_score = dict(zip(moves, [0] * len(moves)))

    # search for max score for each move
    for move in moves:
        move_score[move] += max_score_search(move_made(game, move), depth, val)

    move = max(move_score, key=move_score.get)
    return move
Ejemplo n.º 16
0
def best_move(game, method='score'):
    """
    val should be function game -> int
    """
    board, score = game

    if method == 'score':
        def val(g):
            return g[1]
    elif method == 'empty':
        val = empty_squares
    elif method == 'gradient':
        val = gradient_value
    else:
        print('Invalid method given to best_move function')
        exit(1)

    if score < 10000:
        depth = 4
    elif score < 20000:
        depth = 5
    elif score < 30000:
        depth = 7
    else:
        depth = 7

    moves = possible_moves(board)

    # dict with score for each move
    move_score = dict(zip(moves, [0] * len(moves)))

    # search for max score for each move
    for move in moves:
        move_score[move] += max_score_search(move_made(game, move), depth, val)

    move = max(move_score, key=move_score.get)
    return move