Ejemplo n.º 1
0
    def test_auxiliary(self):
        obs_dim, action_dim, task_num, latent_dim = (2, ), (2, ), 2, 2
        env = GarageEnv(DummyBoxEnv(obs_dim=obs_dim, action_dim=action_dim))
        embedding_spec = InOutSpec(
            input_space=akro.Box(low=np.zeros(task_num),
                                 high=np.ones(task_num)),
            output_space=akro.Box(low=np.zeros(latent_dim),
                                  high=np.ones(latent_dim)))
        encoder = GaussianMLPEncoder(embedding_spec)
        policy = GaussianMLPTaskEmbeddingPolicy(env_spec=env.spec,
                                                encoder=encoder)
        obs_input = tf.compat.v1.placeholder(tf.float32, shape=(None, None, 2))
        task_input = tf.compat.v1.placeholder(tf.float32,
                                              shape=(None, None, 2))
        policy.build(obs_input, task_input)

        assert policy.distribution.loc.get_shape().as_list(
        )[-1] == env.action_space.flat_dim
        assert policy.encoder == encoder
        assert policy.latent_space.flat_dim == latent_dim
        assert policy.task_space.flat_dim == task_num
        assert (policy.augmented_observation_space.flat_dim ==
                env.observation_space.flat_dim + task_num)
        assert policy.encoder_distribution.loc.get_shape().as_list(
        )[-1] == latent_dim
Ejemplo n.º 2
0
    def test_get_action(self, obs_dim, task_num, latent_dim, action_dim):
        env = GarageEnv(DummyBoxEnv(obs_dim=obs_dim, action_dim=action_dim))
        embedding_spec = InOutSpec(
            input_space=akro.Box(low=np.zeros(task_num),
                                 high=np.ones(task_num)),
            output_space=akro.Box(low=np.zeros(latent_dim),
                                  high=np.ones(latent_dim)))
        encoder = GaussianMLPEncoder(embedding_spec)
        policy = GaussianMLPTaskEmbeddingPolicy(env_spec=env.spec,
                                                encoder=encoder)

        env.reset()
        obs, _, _, _ = env.step(1)
        latent = np.random.random((latent_dim, ))
        task = np.zeros(task_num)
        task[0] = 1

        action1, _ = policy.get_action_given_latent(obs, latent)
        action2, _ = policy.get_action_given_task(obs, task)
        action3, _ = policy.get_action(np.concatenate([obs.flatten(), task]))

        assert env.action_space.contains(action1)
        assert env.action_space.contains(action2)
        assert env.action_space.contains(action3)

        obses, latents, tasks = [obs] * 3, [latent] * 3, [task] * 3
        aug_obses = [np.concatenate([obs.flatten(), task])] * 3
        action1n, _ = policy.get_actions_given_latents(obses, latents)
        action2n, _ = policy.get_actions_given_tasks(obses, tasks)
        action3n, _ = policy.get_actions(aug_obses)

        for action in chain(action1n, action2n, action3n):
            assert env.action_space.contains(action)
Ejemplo n.º 3
0
    def test_get_latent(self):
        obs_dim, action_dim, task_num, latent_dim = (2, ), (2, ), 5, 2
        env = GarageEnv(DummyBoxEnv(obs_dim=obs_dim, action_dim=action_dim))
        embedding_spec = InOutSpec(
            input_space=akro.Box(low=np.zeros(task_num),
                                 high=np.ones(task_num)),
            output_space=akro.Box(low=np.zeros(latent_dim),
                                  high=np.ones(latent_dim)))
        encoder = GaussianMLPEncoder(embedding_spec)
        policy = GaussianMLPTaskEmbeddingPolicy(env_spec=env.spec,
                                                encoder=encoder)

        task_id = 3
        task_onehot = np.zeros(task_num)
        task_onehot[task_id] = 1
        latent, latent_info = policy.get_latent(task_onehot)
        assert latent.shape == (latent_dim, )
        assert latent_info['mean'].shape == (latent_dim, )
        assert latent_info['log_std'].shape == (latent_dim, )
Ejemplo n.º 4
0
    def test_get_vars(self):
        obs_dim, action_dim, task_num, latent_dim = (2, ), (2, ), 5, 2
        env = GarageEnv(DummyBoxEnv(obs_dim=obs_dim, action_dim=action_dim))
        embedding_spec = InOutSpec(
            input_space=akro.Box(low=np.zeros(task_num),
                                 high=np.ones(task_num)),
            output_space=akro.Box(low=np.zeros(latent_dim),
                                  high=np.ones(latent_dim)))
        encoder = GaussianMLPEncoder(embedding_spec, hidden_sizes=[32, 32, 32])
        policy = GaussianMLPTaskEmbeddingPolicy(env_spec=env.spec,
                                                encoder=encoder,
                                                hidden_sizes=[32, 32, 32])

        vars1 = sorted(policy.get_trainable_vars(), key=lambda v: v.name)
        vars2 = sorted(policy.get_global_vars(), key=lambda v: v.name)

        assert vars1 == vars2
        # Two network. Each with 4 layers * (1 weight + 1 bias) + 1 log_std
        assert len(vars1) == 2 * (4 * 2 + 1)

        obs = np.random.random(obs_dim)
        latent = np.random.random((latent_dim, ))

        for var in vars1:
            var.assign(np.ones(var.shape))
        assert np.any(policy.get_action_given_latent(obs, latent) != 0)

        for var in vars1:
            var.assign(np.zeros(var.shape))
        assert not np.all(policy.get_action_given_latent(obs, latent) == 0)
Ejemplo n.º 5
0
    def test_encoder_dist_info(self):
        obs_dim, action_dim, task_num, latent_dim = (2, ), (2, ), 5, 2
        env = TfEnv(DummyBoxEnv(obs_dim=obs_dim, action_dim=action_dim))
        with mock.patch(
                'garage.tf.embeddings.'
                'gaussian_mlp_encoder.GaussianMLPModel',
                new=SimpleGaussianMLPModel):

            old_build = SimpleGaussianMLPModel._build

            def float32_build(this, obs_input, name):
                mean, log_std, std, dist = old_build(this, obs_input, name)
                return mean, tf.cast(log_std, tf.float32), std, dist

            SimpleGaussianMLPModel._build = float32_build

            embedding_spec = InOutSpec(
                input_space=akro.Box(low=np.zeros(task_num),
                                     high=np.ones(task_num)),
                output_space=akro.Box(low=np.zeros(latent_dim),
                                      high=np.ones(latent_dim)))
            encoder = GaussianMLPEncoder(embedding_spec)
            policy = GaussianMLPTaskEmbeddingPolicy(env_spec=env.spec,
                                                    encoder=encoder)

            assert policy.encoder_distribution.dim == latent_dim

            inp_ph = tf.compat.v1.placeholder(tf.float32, shape=(None, 5))
            dist_sym = policy.encoder_dist_info_sym(inp_ph)
            dist = self.sess.run(dist_sym,
                                 feed_dict={inp_ph: [np.random.random(5)]})

            expected_mean = np.full(latent_dim, 0.5)
            expected_log_std = np.full(latent_dim, np.log(0.5))

            assert np.allclose(dist['mean'], expected_mean)
            assert np.allclose(dist['log_std'], expected_log_std)

            SimpleGaussianMLPModel._dtype = np.float32
Ejemplo n.º 6
0
    def test_get_latent(self):
        obs_dim, action_dim, task_num, latent_dim = (2, ), (2, ), 5, 2
        env = TfEnv(DummyBoxEnv(obs_dim=obs_dim, action_dim=action_dim))
        with mock.patch(
                'garage.tf.policies.'
                'gaussian_mlp_task_embedding_policy.GaussianMLPModel',
                new=SimpleGaussianMLPModel):
            embedding_spec = InOutSpec(
                input_space=akro.Box(low=np.zeros(task_num),
                                     high=np.ones(task_num)),
                output_space=akro.Box(low=np.zeros(latent_dim),
                                      high=np.ones(latent_dim)))
            encoder = GaussianMLPEncoder(embedding_spec)
            policy = GaussianMLPTaskEmbeddingPolicy(env_spec=env.spec,
                                                    encoder=encoder)

            task_id = 3
            task_onehot = np.zeros(task_num)
            task_onehot[task_id] = 1
            latent, latent_info = policy.get_latent(task_onehot)
            assert latent.shape == (latent_dim, )
            assert latent_info['mean'].shape == (latent_dim, )
            assert latent_info['log_std'].shape == (latent_dim, )
Ejemplo n.º 7
0
    def test_pickling(self):
        obs_dim, action_dim, task_num, latent_dim = (2, ), (2, ), 5, 2
        env = GarageEnv(DummyBoxEnv(obs_dim=obs_dim, action_dim=action_dim))
        embedding_spec = InOutSpec(
            input_space=akro.Box(low=np.zeros(task_num),
                                 high=np.ones(task_num)),
            output_space=akro.Box(low=np.zeros(latent_dim),
                                  high=np.ones(latent_dim)))
        encoder = GaussianMLPEncoder(embedding_spec)
        policy = GaussianMLPTaskEmbeddingPolicy(env_spec=env.spec,
                                                encoder=encoder)

        pickled = pickle.dumps(policy)
        with tf.compat.v1.variable_scope('resumed'):
            unpickled = pickle.loads(pickled)
            assert hasattr(unpickled, '_f_dist_obs_latent')
            assert hasattr(unpickled, '_f_dist_obs_task')
Ejemplo n.º 8
0
    def test_auxiliary(self):
        obs_dim, action_dim, task_num, latent_dim = (2, ), (2, ), 2, 2
        env = TfEnv(DummyBoxEnv(obs_dim=obs_dim, action_dim=action_dim))
        with mock.patch(
                'garage.tf.policies.'
                'gaussian_mlp_task_embedding_policy.GaussianMLPModel',
                new=SimpleGaussianMLPModel):
            embedding_spec = InOutSpec(
                input_space=akro.Box(low=np.zeros(task_num),
                                     high=np.ones(task_num)),
                output_space=akro.Box(low=np.zeros(latent_dim),
                                      high=np.ones(latent_dim)))
            encoder = GaussianMLPEncoder(embedding_spec)
            policy = GaussianMLPTaskEmbeddingPolicy(env_spec=env.spec,
                                                    encoder=encoder)

        assert policy.distribution.dim == env.action_space.flat_dim
        assert policy.encoder == encoder
        assert policy.latent_space.flat_dim == latent_dim
        assert policy.task_space.flat_dim == task_num
        assert (policy.augmented_observation_space.flat_dim ==
                env.observation_space.flat_dim + task_num)
        assert policy.encoder_distribution.dim == latent_dim
Ejemplo n.º 9
0
def te_ppo_mt1_push(ctxt, seed, n_epochs, batch_size_per_task):
    """Train Task Embedding PPO with PointEnv.

    Args:
        ctxt (ExperimentContext): The experiment configuration used by
            :class:`~Trainer` to create the :class:`~Snapshotter`.
        seed (int): Used to seed the random number generator to produce
            determinism.
        n_epochs (int): Total number of epochs for training.
        batch_size_per_task (int): Batch size of samples for each task.

    """
    set_seed(seed)
    n_tasks = 50
    mt1 = metaworld.MT1('push-v1')
    task_sampler = MetaWorldTaskSampler(mt1,
                                        'train',
                                        lambda env, _: normalize(env),
                                        add_env_onehot=False)
    envs = [env_up() for env_up in task_sampler.sample(n_tasks)]
    env = MultiEnvWrapper(envs,
                          sample_strategy=round_robin_strategy,
                          mode='vanilla')

    latent_length = 2
    inference_window = 6
    batch_size = batch_size_per_task * n_tasks
    policy_ent_coeff = 2e-2
    encoder_ent_coeff = 2e-4
    inference_ce_coeff = 5e-2
    embedding_init_std = 0.1
    embedding_max_std = 0.2
    embedding_min_std = 1e-6
    policy_init_std = 1.0
    policy_max_std = None
    policy_min_std = None

    with TFTrainer(snapshot_config=ctxt) as trainer:

        task_embed_spec = TEPPO.get_encoder_spec(env.task_space,
                                                 latent_dim=latent_length)

        task_encoder = GaussianMLPEncoder(
            name='embedding',
            embedding_spec=task_embed_spec,
            hidden_sizes=(20, 20),
            std_share_network=True,
            init_std=embedding_init_std,
            max_std=embedding_max_std,
            output_nonlinearity=tf.nn.tanh,
            min_std=embedding_min_std,
        )

        traj_embed_spec = TEPPO.get_infer_spec(
            env.spec,
            latent_dim=latent_length,
            inference_window_size=inference_window)

        inference = GaussianMLPEncoder(
            name='inference',
            embedding_spec=traj_embed_spec,
            hidden_sizes=(20, 10),
            std_share_network=True,
            init_std=2.0,
            output_nonlinearity=tf.nn.tanh,
            min_std=embedding_min_std,
        )

        policy = GaussianMLPTaskEmbeddingPolicy(
            name='policy',
            env_spec=env.spec,
            encoder=task_encoder,
            hidden_sizes=(32, 16),
            std_share_network=True,
            max_std=policy_max_std,
            init_std=policy_init_std,
            min_std=policy_min_std,
        )

        baseline = LinearMultiFeatureBaseline(
            env_spec=env.spec, features=['observations', 'tasks', 'latents'])

        algo = TEPPO(env_spec=env.spec,
                     policy=policy,
                     baseline=baseline,
                     inference=inference,
                     discount=0.99,
                     lr_clip_range=0.2,
                     policy_ent_coeff=policy_ent_coeff,
                     encoder_ent_coeff=encoder_ent_coeff,
                     inference_ce_coeff=inference_ce_coeff,
                     use_softplus_entropy=True,
                     optimizer_args=dict(
                         batch_size=32,
                         max_optimization_epochs=10,
                         learning_rate=1e-3,
                     ),
                     inference_optimizer_args=dict(
                         batch_size=32,
                         max_optimization_epochs=10,
                     ),
                     center_adv=True,
                     stop_ce_gradient=True)

        trainer.setup(algo,
                      env,
                      sampler_cls=LocalSampler,
                      sampler_args=None,
                      worker_class=TaskEmbeddingWorker)
        trainer.train(n_epochs=n_epochs, batch_size=batch_size, plot=False)
Ejemplo n.º 10
0
    def setup_method(self):
        super().setup_method()

        def circle(r, n):
            """Generate n points on a circle of radius r.

            Args:
                r (float): Radius of the circle.
                n (int): Number of points to generate.

            Yields:
                tuple(float, float): Coordinate of a point.

            """
            for t in np.arange(0, 2 * np.pi, 2 * np.pi / n):
                yield r * np.sin(t), r * np.cos(t)

        N = 4
        goals = circle(3.0, N)
        tasks = {
            str(i + 1): {
                'args': [],
                'kwargs': {
                    'goal': g,
                    'never_done': False,
                    'done_bonus': 0.0,
                }
            }
            for i, g in enumerate(goals)
        }

        latent_length = 1
        inference_window = 2
        self.batch_size = 100 * len(tasks)
        self.policy_ent_coeff = 2e-2
        self.encoder_ent_coeff = 2.2e-3
        self.inference_ce_coeff = 5e-2
        self.max_path_length = 100
        embedding_init_std = 1.0
        embedding_max_std = 2.0
        embedding_min_std = 0.38
        policy_init_std = 1.0
        policy_max_std = None
        policy_min_std = None

        task_names = sorted(tasks.keys())
        task_args = [tasks[t]['args'] for t in task_names]
        task_kwargs = [tasks[t]['kwargs'] for t in task_names]

        task_envs = [
            GarageEnv(PointEnv(*t_args, **t_kwargs))
            for t_args, t_kwargs in zip(task_args, task_kwargs)
        ]
        self.env = env = MultiEnvWrapper(task_envs,
                                         round_robin_strategy,
                                         mode='vanilla')

        latent_lb = np.zeros(latent_length, )
        latent_ub = np.ones(latent_length, )
        latent_space = akro.Box(latent_lb, latent_ub)

        obs_lb, obs_ub = env.observation_space.bounds
        obs_lb_flat = env.observation_space.flatten(obs_lb)
        obs_ub_flat = env.observation_space.flatten(obs_ub)
        traj_lb = np.stack([obs_lb_flat] * inference_window)
        traj_ub = np.stack([obs_ub_flat] * inference_window)
        traj_space = akro.Box(traj_lb, traj_ub)

        task_embed_spec = InOutSpec(env.task_space, latent_space)
        traj_embed_spec = InOutSpec(traj_space, latent_space)

        self.inference = GaussianMLPEncoder(
            name='inference',
            embedding_spec=traj_embed_spec,
            hidden_sizes=[20, 10],
            std_share_network=True,
            init_std=2.0,
            output_nonlinearity=tf.nn.tanh,
            min_std=embedding_min_std,
        )

        task_encoder = GaussianMLPEncoder(
            name='embedding',
            embedding_spec=task_embed_spec,
            hidden_sizes=[20, 20],
            std_share_network=True,
            init_std=embedding_init_std,
            max_std=embedding_max_std,
            output_nonlinearity=tf.nn.tanh,
            min_std=embedding_min_std,
        )

        self.policy = GaussianMLPTaskEmbeddingPolicy(
            name='policy',
            env_spec=env.spec,
            encoder=task_encoder,
            hidden_sizes=[32, 16],
            std_share_network=True,
            max_std=policy_max_std,
            init_std=policy_init_std,
            min_std=policy_min_std,
        )

        self.baseline = LinearMultiFeatureBaseline(
            env_spec=env.spec, features=['observations', 'tasks', 'latents'])
Ejemplo n.º 11
0
def te_ppo_mt50(ctxt, seed, n_epochs, batch_size_per_task):
    """Train Task Embedding PPO with PointEnv.

    Args:
        ctxt (garage.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.
        n_epochs (int): Total number of epochs for training.
        batch_size_per_task (int): Batch size of samples for each task.

    """
    set_seed(seed)
    tasks = MT50.get_train_tasks().all_task_names
    envs = [
        normalize(GymEnv(MT50.from_task(task), max_episode_length=150))
        for task in tasks
    ]
    env = MultiEnvWrapper(envs,
                          sample_strategy=round_robin_strategy,
                          mode='del-onehot')

    latent_length = 6
    inference_window = 6
    batch_size = batch_size_per_task * len(tasks)
    policy_ent_coeff = 2e-2
    encoder_ent_coeff = 2e-4
    inference_ce_coeff = 5e-2
    embedding_init_std = 0.1
    embedding_max_std = 0.2
    embedding_min_std = 1e-6
    policy_init_std = 1.0
    policy_max_std = None
    policy_min_std = None

    with LocalTFRunner(snapshot_config=ctxt) as runner:

        task_embed_spec = TEPPO.get_encoder_spec(env.task_space,
                                                 latent_dim=latent_length)

        task_encoder = GaussianMLPEncoder(
            name='embedding',
            embedding_spec=task_embed_spec,
            hidden_sizes=(20, 20),
            std_share_network=True,
            init_std=embedding_init_std,
            max_std=embedding_max_std,
            output_nonlinearity=tf.nn.tanh,
            min_std=embedding_min_std,
        )

        traj_embed_spec = TEPPO.get_infer_spec(
            env.spec,
            latent_dim=latent_length,
            inference_window_size=inference_window)

        inference = GaussianMLPEncoder(
            name='inference',
            embedding_spec=traj_embed_spec,
            hidden_sizes=(20, 10),
            std_share_network=True,
            init_std=2.0,
            output_nonlinearity=tf.nn.tanh,
            min_std=embedding_min_std,
        )

        policy = GaussianMLPTaskEmbeddingPolicy(
            name='policy',
            env_spec=env.spec,
            encoder=task_encoder,
            hidden_sizes=(32, 16),
            std_share_network=True,
            max_std=policy_max_std,
            init_std=policy_init_std,
            min_std=policy_min_std,
        )

        baseline = LinearMultiFeatureBaseline(
            env_spec=env.spec, features=['observations', 'tasks', 'latents'])

        algo = TEPPO(env_spec=env.spec,
                     policy=policy,
                     baseline=baseline,
                     inference=inference,
                     discount=0.99,
                     lr_clip_range=0.2,
                     policy_ent_coeff=policy_ent_coeff,
                     encoder_ent_coeff=encoder_ent_coeff,
                     inference_ce_coeff=inference_ce_coeff,
                     use_softplus_entropy=True,
                     optimizer_args=dict(
                         batch_size=32,
                         max_optimization_epochs=10,
                         learning_rate=1e-3,
                     ),
                     inference_optimizer_args=dict(
                         batch_size=32,
                         max_optimization_epochs=10,
                     ),
                     center_adv=True,
                     stop_ce_gradient=True)

        runner.setup(algo,
                     env,
                     sampler_cls=LocalSampler,
                     sampler_args=None,
                     worker_class=TaskEmbeddingWorker)
        runner.train(n_epochs=n_epochs, batch_size=batch_size, plot=False)
Ejemplo n.º 12
0
def te_ppo_pointenv(ctxt, seed, n_epochs, batch_size_per_task):
    """Train Task Embedding PPO with PointEnv.

    Args:
        ctxt (garage.experiment.ExperimentContext): The experiment
            configuration used by Trainer to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.
        n_epochs (int): Total number of epochs for training.
        batch_size_per_task (int): Batch size of samples for each task.

    """
    set_seed(seed)

    tasks = TASKS
    latent_length = 2
    inference_window = 6
    batch_size = batch_size_per_task * len(TASKS)
    policy_ent_coeff = 1e-3
    encoder_ent_coeff = 1e-3
    inference_ce_coeff = 5e-2
    embedding_init_std = 0.1
    embedding_max_std = 0.2
    embedding_min_std = 1e-6
    policy_init_std = 1.0
    policy_max_std = 2.0
    policy_min_std = None

    task_names = sorted(tasks.keys())
    task_args = [tasks[t]['args'] for t in task_names]
    task_kwargs = [tasks[t]['kwargs'] for t in task_names]

    with TFTrainer(snapshot_config=ctxt) as trainer:
        task_envs = [
            PointEnv(*t_args, **t_kwargs, max_episode_length=100)
            for t_args, t_kwargs in zip(task_args, task_kwargs)
        ]
        env = MultiEnvWrapper(task_envs, round_robin_strategy, mode='vanilla')

        task_embed_spec = TEPPO.get_encoder_spec(env.task_space,
                                                 latent_dim=latent_length)

        task_encoder = GaussianMLPEncoder(
            name='embedding',
            embedding_spec=task_embed_spec,
            hidden_sizes=(20, 20),
            std_share_network=True,
            init_std=embedding_init_std,
            max_std=embedding_max_std,
            output_nonlinearity=tf.nn.tanh,
            std_output_nonlinearity=tf.nn.tanh,
            min_std=embedding_min_std,
        )

        traj_embed_spec = TEPPO.get_infer_spec(
            env.spec,
            latent_dim=latent_length,
            inference_window_size=inference_window)

        inference = GaussianMLPEncoder(
            name='inference',
            embedding_spec=traj_embed_spec,
            hidden_sizes=(20, 20),
            std_share_network=True,
            init_std=0.1,
            output_nonlinearity=tf.nn.tanh,
            std_output_nonlinearity=tf.nn.tanh,
            min_std=embedding_min_std,
        )

        policy = GaussianMLPTaskEmbeddingPolicy(
            name='policy',
            env_spec=env.spec,
            encoder=task_encoder,
            hidden_sizes=(32, 16),
            std_share_network=True,
            max_std=policy_max_std,
            init_std=policy_init_std,
            min_std=policy_min_std,
        )

        baseline = LinearMultiFeatureBaseline(
            env_spec=env.spec, features=['observations', 'tasks', 'latents'])

        sampler = LocalSampler(agents=policy,
                               envs=env,
                               max_episode_length=env.spec.max_episode_length,
                               is_tf_worker=True,
                               worker_class=TaskEmbeddingWorker)

        algo = TEPPO(env_spec=env.spec,
                     policy=policy,
                     baseline=baseline,
                     sampler=sampler,
                     inference=inference,
                     discount=0.99,
                     lr_clip_range=0.2,
                     policy_ent_coeff=policy_ent_coeff,
                     encoder_ent_coeff=encoder_ent_coeff,
                     inference_ce_coeff=inference_ce_coeff,
                     use_softplus_entropy=True,
                     optimizer_args=dict(
                         batch_size=32,
                         max_optimization_epochs=10,
                         learning_rate=1e-3,
                     ),
                     inference_optimizer_args=dict(
                         batch_size=32,
                         max_optimization_epochs=10,
                         learning_rate=1e-3,
                     ),
                     center_adv=True,
                     stop_ce_gradient=True)

        trainer.setup(algo, env)
        trainer.train(n_epochs=n_epochs, batch_size=batch_size, plot=False)
Ejemplo n.º 13
0
    def test_get_action(self, mock_normal, obs_dim, task_num, latent_dim,
                        action_dim):
        mock_normal.return_value = 0.5
        env = TfEnv(DummyBoxEnv(obs_dim=obs_dim, action_dim=action_dim))
        with mock.patch(
                'garage.tf.policies.'
                'gaussian_mlp_task_embedding_policy.GaussianMLPModel',
                new=SimpleGaussianMLPModel):
            embedding_spec = InOutSpec(
                input_space=akro.Box(low=np.zeros(task_num),
                                     high=np.ones(task_num)),
                output_space=akro.Box(low=np.zeros(latent_dim),
                                      high=np.ones(latent_dim)))
            encoder = GaussianMLPEncoder(embedding_spec)
            policy = GaussianMLPTaskEmbeddingPolicy(env_spec=env.spec,
                                                    encoder=encoder)

        env.reset()
        obs, _, _, _ = env.step(1)
        latent = np.random.random((latent_dim, ))
        task = np.zeros(task_num)
        task[0] = 1

        action1, prob1 = policy.get_action_given_latent(obs, latent)
        action2, prob2 = policy.get_action_given_task(obs, task)
        action3, prob3 = policy.get_action(
            np.concatenate([obs.flatten(), task]))

        expected_action = np.full(action_dim, 0.75)
        expected_mean = np.full(action_dim, 0.5)
        expected_log_std = np.full(action_dim, np.log(0.5))

        assert env.action_space.contains(action1)
        assert np.array_equal(action1, expected_action)
        assert np.array_equal(prob1['mean'], expected_mean)
        assert np.array_equal(prob1['log_std'], expected_log_std)

        assert env.action_space.contains(action2)
        assert np.array_equal(action2, expected_action)
        assert np.array_equal(prob2['mean'], expected_mean)
        assert np.array_equal(prob2['log_std'], expected_log_std)

        assert env.action_space.contains(action3)
        assert np.array_equal(action3, expected_action)
        assert np.array_equal(prob3['mean'], expected_mean)
        assert np.array_equal(prob3['log_std'], expected_log_std)

        obses, latents, tasks = [obs] * 3, [latent] * 3, [task] * 3
        aug_obses = [np.concatenate([obs.flatten(), task])] * 3
        action1n, prob1n = policy.get_actions_given_latents(obses, latents)
        action2n, prob2n = policy.get_actions_given_tasks(obses, tasks)
        action3n, prob3n = policy.get_actions(aug_obses)

        for action, mean, log_std in chain(
                zip(action1n, prob1n['mean'], prob1n['log_std']),
                zip(action2n, prob2n['mean'], prob2n['log_std']),
                zip(action3n, prob3n['mean'], prob3n['log_std'])):
            assert env.action_space.contains(action)
            assert np.array_equal(action, expected_action)
            assert np.array_equal(mean, expected_mean)
            assert np.array_equal(log_std, expected_log_std)
Ejemplo n.º 14
0
    def test_dist_info(self, obs_dim, task_num, latent_dim, action_dim):
        env = TfEnv(DummyBoxEnv(obs_dim=obs_dim, action_dim=action_dim))
        with mock.patch(
                'garage.tf.policies.'
                'gaussian_mlp_task_embedding_policy.GaussianMLPModel',
                new=SimpleGaussianMLPModel):
            embedding_spec = InOutSpec(
                input_space=akro.Box(low=np.zeros(task_num),
                                     high=np.ones(task_num)),
                output_space=akro.Box(low=np.zeros(latent_dim),
                                      high=np.ones(latent_dim)))
            encoder = GaussianMLPEncoder(embedding_spec)
            policy = GaussianMLPTaskEmbeddingPolicy(env_spec=env.spec,
                                                    encoder=encoder)

        env.reset()
        obs, _, _, _ = env.step(1)
        task = np.zeros(task_num)
        task[0] = 1
        aug_obs = np.concatenate([obs.flatten(), task])
        latent = np.random.random(latent_dim)

        obs_dim = env.spec.observation_space.flat_dim
        obs_ph = tf.compat.v1.placeholder(tf.float32, shape=(None, obs_dim))
        task_ph = tf.compat.v1.placeholder(tf.float32, shape=(None, task_num))
        latent_ph = tf.compat.v1.placeholder(tf.float32,
                                             shape=(None, latent_dim))
        aug_obs_ph = tf.compat.v1.concat([obs_ph, task_ph], axis=1)

        dist0_sym = policy.dist_info_sym(aug_obs_ph, name='p0_sym')
        dist1_sym = policy.dist_info_sym_given_task(obs_ph,
                                                    task_ph,
                                                    name='p1_sym')
        dist2_sym = policy.dist_info_sym_given_latent(obs_ph,
                                                      latent_ph,
                                                      name='p2_sym')

        # flatten output
        expected_mean = [np.full(np.prod(action_dim), 0.5)]
        expected_log_std = [np.full(np.prod(action_dim), np.log(0.5))]

        prob0 = self.sess.run(dist0_sym,
                              feed_dict={aug_obs_ph: [aug_obs.flatten()]})
        prob1 = self.sess.run(dist1_sym,
                              feed_dict={
                                  obs_ph: [obs.flatten()],
                                  task_ph: [task]
                              })
        prob2 = self.sess.run(dist2_sym,
                              feed_dict={
                                  obs_ph: [obs.flatten()],
                                  latent_ph: [latent]
                              })
        prob3 = policy.dist_info(aug_obs)

        assert np.array_equal(prob0['mean'].flatten(), expected_mean[0])
        assert np.array_equal(prob0['log_std'].flatten(), expected_log_std[0])
        assert np.array_equal(prob1['mean'], expected_mean)
        assert np.array_equal(prob1['log_std'], expected_log_std)
        assert np.array_equal(prob2['mean'], expected_mean)
        assert np.array_equal(prob2['log_std'], expected_log_std)
        assert np.array_equal(prob3['mean'].flatten(), expected_mean[0])
        assert np.array_equal(prob3['log_std'].flatten(), expected_log_std[0])