def test_fit_unnormalized(self):
        cmr = ContinuousMLPRegressorWithModel(input_shape=(1, ),
                                              output_dim=1,
                                              normalize_inputs=False)
        data = np.linspace(-np.pi, np.pi, 1000)
        obs = [{'observations': [[x]], 'returns': [np.sin(x)]} for x in data]

        observations = np.concatenate([p['observations'] for p in obs])
        returns = np.concatenate([p['returns'] for p in obs])
        for _ in range(150):
            cmr.fit(observations, returns.reshape((-1, 1)))

        paths = {
            'observations': [[-np.pi], [-np.pi / 2], [-np.pi / 4], [0],
                             [np.pi / 4], [np.pi / 2], [np.pi]]
        }

        prediction = cmr.predict(paths['observations'])

        expected = [[0], [-1], [-0.707], [0], [0.707], [1], [0]]
        assert np.allclose(prediction, expected, rtol=0, atol=0.1)

        x_mean = self.sess.run(cmr.model.networks['default'].x_mean)
        x_mean_expected = np.zeros_like(x_mean)
        x_std = self.sess.run(cmr.model.networks['default'].x_std)
        x_std_expected = np.ones_like(x_std)
        assert np.array_equal(x_mean, x_mean_expected)
        assert np.array_equal(x_std, x_std_expected)
    def test_is_pickleable(self):
        cmr = ContinuousMLPRegressorWithModel(input_shape=(1, ), output_dim=1)

        with tf.variable_scope(('ContinuousMLPRegressorWithModel/'
                                'NormalizedInputMLPModel'),
                               reuse=True):
            bias = tf.get_variable('mlp/hidden_0/bias')
        bias.load(tf.ones_like(bias).eval())

        result1 = cmr.predict(np.ones((1, 1)))
        h = pickle.dumps(cmr)

        with tf.Session(graph=tf.Graph()):
            cmr_pickled = pickle.loads(h)
            result2 = cmr_pickled.predict(np.ones((1, 1)))
            assert np.array_equal(result1, result2)
Ejemplo n.º 3
0
class ContinuousMLPBaselineWithModel(Baseline):
    """A value function using a MLP network."""

    def __init__(
            self,
            env_spec,
            subsample_factor=1.,
            num_seq_inputs=1,
            regressor_args=None,
            name='ContinuousMLPBaselineWithModel',
    ):
        """
        Continuous MLP Baseline with Model.

        It fits the input data by performing linear regression
        to the outputs.

        Args:
            env_spec (garage.envs.env_spec.EnvSpec): Environment specification.
            subsample_factor (float): The factor to subsample the data. By
                default it is 1.0, which means using all the data.
            num_seq_inputs (float): Number of sequence per input. By default
                it is 1.0, which means only one single sequence.
            regressor_args (dict): Arguments for regressor.
        """
        super().__init__(env_spec)
        if regressor_args is None:
            regressor_args = dict()

        self._regressor = ContinuousMLPRegressorWithModel(
            input_shape=(
                env_spec.observation_space.flat_dim * num_seq_inputs, ),
            output_dim=1,
            name=name,
            **regressor_args)
        self.name = name

    @overrides
    def fit(self, paths):
        """Fit regressor based on paths."""
        observations = np.concatenate([p['observations'] for p in paths])
        returns = np.concatenate([p['returns'] for p in paths])
        self._regressor.fit(observations, returns.reshape((-1, 1)))

    @overrides
    def predict(self, path):
        """Predict value based on paths."""
        return self._regressor.predict(path['observations']).flatten()

    @overrides
    def get_param_values(self, **tags):
        """Get parameter values."""
        return self._regressor.get_param_values(**tags)

    @overrides
    def set_param_values(self, flattened_params, **tags):
        """Set parameter values to val."""
        self._regressor.set_param_values(flattened_params, **tags)

    @overrides
    def get_params_internal(self, **tags):
        """Get internal parameters."""
        return self._regressor.get_params_internal(**tags)