def test_entropy(self):
     """Test get_entropy method of the policy."""
     env_spec = TfEnv(DummyBoxEnv())
     init_std = 1.
     obs = torch.Tensor([0, 0, 0, 0]).float()
     policy = TanhGaussianMLPPolicy(env_spec=env_spec,
                                    hidden_sizes=(1, ),
                                    init_std=init_std,
                                    hidden_nonlinearity=None,
                                    std_parameterization='exp',
                                    hidden_w_init=nn.init.ones_,
                                    output_w_init=nn.init.ones_)
     dist = policy(obs)
     assert torch.allclose(dist.entropy(), policy.entropy(obs))
Ejemplo n.º 2
0
def sac_half_cheetah_batch(ctxt=None, seed=1):
    """Set up environment and algorithm and run the task.

    Args:
        ctxt (garage.experiment.ExperimentContext): The experiment
            configuration used by Trainer to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.

    """
    deterministic.set_seed(seed)
    trainer = Trainer(snapshot_config=ctxt)
    env = normalize(GymEnv('HalfCheetah-v2'))

    policy = TanhGaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=[256, 256],
        hidden_nonlinearity=nn.ReLU,
        output_nonlinearity=None,
        min_std=np.exp(-20.),
        max_std=np.exp(2.),
    )

    qf1 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[256, 256],
                                 hidden_nonlinearity=F.relu)

    qf2 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[256, 256],
                                 hidden_nonlinearity=F.relu)

    replay_buffer = PathBuffer(capacity_in_transitions=int(1e6))

    sampler = LocalSampler(agents=policy,
                           envs=env,
                           max_episode_length=env.spec.max_episode_length,
                           worker_class=FragmentWorker)

    sac = SAC(env_spec=env.spec,
              policy=policy,
              qf1=qf1,
              qf2=qf2,
              sampler=sampler,
              gradient_steps_per_itr=1000,
              max_episode_length_eval=1000,
              replay_buffer=replay_buffer,
              min_buffer_size=1e4,
              target_update_tau=5e-3,
              discount=0.99,
              buffer_batch_size=256,
              reward_scale=1.,
              steps_per_epoch=1)

    if torch.cuda.is_available():
        set_gpu_mode(True)
    else:
        set_gpu_mode(False)
    sac.to()
    trainer.setup(algo=sac, env=env)
    trainer.train(n_epochs=1000, batch_size=1000)
Ejemplo n.º 3
0
def sac_setup(env, trainer, args):
    policy = TanhGaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=[args.hidden_dim] * args.depth,
        hidden_nonlinearity=nn.ReLU,
        output_nonlinearity=None,
        min_std=np.exp(-20.),
        max_std=np.exp(2.),
    )

    qf1 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[args.hidden_dim] * args.depth,
                                 hidden_nonlinearity=F.relu)

    qf2 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[args.hidden_dim] * args.depth,
                                 hidden_nonlinearity=F.relu)

    replay_buffer = PathBuffer(capacity_in_transitions=int(args.buffer_size))

    sac = SAC(env_spec=env.spec,
              policy=policy,
              qf1=qf1,
              qf2=qf2,
              **convert_kwargs(args, SAC))

    trainer.setup(algo=sac, env=env, sampler_cls=LocalSampler)
    return sac
Ejemplo n.º 4
0
    def test_get_action_dict_space(self):
        """Test if observations from dict obs spaces are properly flattened."""
        env = GymEnv(DummyDictEnv(obs_space_type='box', act_space_type='box'))
        policy = TanhGaussianMLPPolicy(env_spec=env.spec,
                                       hidden_nonlinearity=None,
                                       hidden_sizes=(1, ),
                                       hidden_w_init=nn.init.ones_,
                                       output_w_init=nn.init.ones_)
        obs = env.reset()[0]

        action, _ = policy.get_action(obs)
        assert env.action_space.shape == action.shape

        actions, _ = policy.get_actions(np.array([obs, obs]))
        for action in actions:
            assert env.action_space.shape == action.shape
Ejemplo n.º 5
0
def test_fixed_alpha():
    """Test if using fixed_alpha ensures that alpha is non differentiable."""
    env_names = ['InvertedDoublePendulum-v2', 'InvertedDoublePendulum-v2']
    task_envs = [GymEnv(name, max_episode_length=100) for name in env_names]
    env = MultiEnvWrapper(task_envs, sample_strategy=round_robin_strategy)
    test_envs = MultiEnvWrapper(task_envs,
                                sample_strategy=round_robin_strategy)
    deterministic.set_seed(0)
    trainer = Trainer(snapshot_config=snapshot_config)
    policy = TanhGaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=[32, 32],
        hidden_nonlinearity=torch.nn.ReLU,
        output_nonlinearity=None,
        min_std=np.exp(-20.),
        max_std=np.exp(2.),
    )

    qf1 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[32, 32],
                                 hidden_nonlinearity=F.relu)

    qf2 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[32, 32],
                                 hidden_nonlinearity=F.relu)
    replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), )
    num_tasks = 2
    buffer_batch_size = 128
    sampler = LocalSampler(agents=policy,
                           envs=env,
                           max_episode_length=env.spec.max_episode_length,
                           worker_class=FragmentWorker)
    mtsac = MTSAC(policy=policy,
                  qf1=qf1,
                  qf2=qf2,
                  sampler=sampler,
                  gradient_steps_per_itr=100,
                  eval_env=[test_envs],
                  env_spec=env.spec,
                  num_tasks=num_tasks,
                  steps_per_epoch=1,
                  replay_buffer=replay_buffer,
                  min_buffer_size=1e3,
                  target_update_tau=5e-3,
                  discount=0.99,
                  buffer_batch_size=buffer_batch_size,
                  fixed_alpha=np.exp(0.5))
    if torch.cuda.is_available():
        set_gpu_mode(True)
    else:
        set_gpu_mode(False)
    mtsac.to()
    assert torch.allclose(torch.Tensor([0.5] * num_tasks),
                          mtsac._log_alpha.to('cpu'))
    trainer.setup(mtsac, env)
    trainer.train(n_epochs=1, batch_size=128, plot=False)
    assert torch.allclose(torch.Tensor([0.5] * num_tasks),
                          mtsac._log_alpha.to('cpu'))
    assert not mtsac._use_automatic_entropy_tuning
Ejemplo n.º 6
0
def test_to():
    """Test the torch function that moves modules to GPU.

        Test that the policy and qfunctions are moved to gpu if gpu is
        available.

    """
    env_names = ['CartPole-v0', 'CartPole-v1']
    task_envs = [GarageEnv(env_name=name) for name in env_names]
    env = MultiEnvWrapper(task_envs, sample_strategy=round_robin_strategy)
    deterministic.set_seed(0)
    policy = TanhGaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=[1, 1],
        hidden_nonlinearity=torch.nn.ReLU,
        output_nonlinearity=None,
        min_std=np.exp(-20.),
        max_std=np.exp(2.),
    )

    qf1 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[1, 1],
                                 hidden_nonlinearity=F.relu)

    qf2 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[1, 1],
                                 hidden_nonlinearity=F.relu)
    replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), )

    num_tasks = 2
    buffer_batch_size = 2
    mtsac = MTSAC(policy=policy,
                  qf1=qf1,
                  qf2=qf2,
                  gradient_steps_per_itr=150,
                  max_path_length=150,
                  eval_env=env,
                  env_spec=env.spec,
                  num_tasks=num_tasks,
                  steps_per_epoch=5,
                  replay_buffer=replay_buffer,
                  min_buffer_size=1e3,
                  target_update_tau=5e-3,
                  discount=0.99,
                  buffer_batch_size=buffer_batch_size)

    set_gpu_mode(torch.cuda.is_available())
    mtsac.to()
    device = global_device()
    for param in mtsac._qf1.parameters():
        assert param.device == device
    for param in mtsac._qf2.parameters():
        assert param.device == device
    for param in mtsac._qf2.parameters():
        assert param.device == device
    for param in mtsac.policy.parameters():
        assert param.device == device
    assert mtsac._log_alpha.device == device
Ejemplo n.º 7
0
def torch_sac_half_cheetah(ctxt=None, seed=1):
    """Set up environment and algorithm and run the task.

    Args:
        ctxt (garage.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.

    """
    deterministic.set_seed(seed)
    runner = LocalRunner(snapshot_config=ctxt)
    env = GarageEnv(normalize(gym.make('HalfCheetah-v2')))

    policy = TanhGaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=[256, 256],
        hidden_nonlinearity=nn.ReLU,
        output_nonlinearity=None,
        min_std=np.exp(-20.),
        max_std=np.exp(2.),
    )

    qf1 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[256, 256],
                                 hidden_nonlinearity=F.relu)

    qf2 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[256, 256],
                                 hidden_nonlinearity=F.relu)

    replay_buffer = SimpleReplayBuffer(env_spec=env.spec,
                                       size_in_transitions=int(1e6),
                                       time_horizon=1)

    sac = SAC(env_spec=env.spec,
              policy=policy,
              qf1=qf1,
              qf2=qf2,
              gradient_steps_per_itr=1000,
              max_path_length=500,
              use_automatic_entropy_tuning=True,
              replay_buffer=replay_buffer,
              min_buffer_size=1e4,
              target_update_tau=5e-3,
              discount=0.99,
              buffer_batch_size=256,
              reward_scale=1.,
              steps_per_epoch=1)

    if torch.cuda.is_available():
        tu.set_gpu_mode(True)
    else:
        tu.set_gpu_mode(False)
    sac.to()
    runner.setup(algo=sac, env=env, sampler_cls=LocalSampler)
    runner.train(n_epochs=1000, batch_size=1000)
Ejemplo n.º 8
0
def test_sac_inverted_double_pendulum():
    """Test Sac performance on inverted pendulum."""
    # pylint: disable=unexpected-keyword-arg
    env = normalize(GymEnv('InvertedDoublePendulum-v2',
                           max_episode_length=100))
    deterministic.set_seed(0)
    policy = TanhGaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=[32, 32],
        hidden_nonlinearity=torch.nn.ReLU,
        output_nonlinearity=None,
        min_std=np.exp(-20.),
        max_std=np.exp(2.),
    )

    qf1 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[32, 32],
                                 hidden_nonlinearity=F.relu)

    qf2 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[32, 32],
                                 hidden_nonlinearity=F.relu)
    replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), )
    trainer = Trainer(snapshot_config=snapshot_config)
    sampler = LocalSampler(agents=policy,
                           envs=env,
                           max_episode_length=env.spec.max_episode_length,
                           worker_class=FragmentWorker)
    sac = SAC(env_spec=env.spec,
              policy=policy,
              qf1=qf1,
              qf2=qf2,
              sampler=sampler,
              gradient_steps_per_itr=100,
              replay_buffer=replay_buffer,
              min_buffer_size=1e3,
              target_update_tau=5e-3,
              discount=0.99,
              buffer_batch_size=64,
              reward_scale=1.,
              steps_per_epoch=2)
    trainer.setup(sac, env)
    if torch.cuda.is_available():
        set_gpu_mode(True)
    else:
        set_gpu_mode(False)
    sac.to()
    ret = trainer.train(n_epochs=12, batch_size=200, plot=False)
    # check that automatic entropy tuning is used
    assert sac._use_automatic_entropy_tuning
    # assert that there was a gradient properly connected to alpha
    # this doesn't verify that the path from the temperature objective is
    # correct.
    assert not torch.allclose(torch.Tensor([1.]), sac._log_alpha.to('cpu'))
    # check that policy is learning beyond predecided threshold
    assert ret > 80
Ejemplo n.º 9
0
    def test_get_action_np(self, hidden_sizes):
        """Test Policy get action function with numpy inputs."""
        env_spec = GymEnv(DummyBoxEnv())
        obs_dim = env_spec.observation_space.flat_dim
        act_dim = env_spec.action_space.flat_dim
        obs = np.ones((obs_dim, ), dtype=np.float32)
        init_std = 2.

        policy = TanhGaussianMLPPolicy(env_spec=env_spec,
                                       hidden_sizes=hidden_sizes,
                                       init_std=init_std,
                                       hidden_nonlinearity=None,
                                       std_parameterization='exp',
                                       hidden_w_init=nn.init.ones_,
                                       output_w_init=nn.init.ones_)
        expected_mean = torch.full((act_dim, ), 1.0, dtype=torch.float)
        action, prob = policy.get_action(obs)
        assert np.allclose(prob['mean'], expected_mean.numpy(), rtol=1e-3)
        assert action.shape == (act_dim, )
    def test_get_actions(self, batch_size, hidden_sizes):
        """Test Tanh Gaussian Policy get actions function."""
        env_spec = GarageEnv(DummyBoxEnv())
        obs_dim = env_spec.observation_space.flat_dim
        act_dim = env_spec.action_space.flat_dim
        obs = torch.ones([batch_size, obs_dim], dtype=torch.float32)
        init_std = 2.

        policy = TanhGaussianMLPPolicy(env_spec=env_spec,
                                       hidden_sizes=hidden_sizes,
                                       init_std=init_std,
                                       hidden_nonlinearity=None,
                                       std_parameterization='exp',
                                       hidden_w_init=nn.init.ones_,
                                       output_w_init=nn.init.ones_)

        expected_mean = torch.full([batch_size, act_dim], 1.0)
        action, prob = policy.get_actions(obs)
        assert np.allclose(prob['mean'], expected_mean.numpy(), rtol=1e-3)
        assert action.shape == (batch_size, act_dim)
Ejemplo n.º 11
0
def test_sac_to():
    """Test moving Sac between CPU and GPU."""
    env = normalize(GymEnv('InvertedDoublePendulum-v2',
                           max_episode_length=100))
    deterministic.set_seed(0)
    policy = TanhGaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=[32, 32],
        hidden_nonlinearity=torch.nn.ReLU,
        output_nonlinearity=None,
        min_std=np.exp(-20.),
        max_std=np.exp(2.),
    )

    qf1 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[32, 32],
                                 hidden_nonlinearity=F.relu)

    qf2 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[32, 32],
                                 hidden_nonlinearity=F.relu)
    replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), )
    trainer = Trainer(snapshot_config=snapshot_config)
    sampler = LocalSampler(agents=policy,
                           envs=env,
                           max_episode_length=env.spec.max_episode_length,
                           worker_class=FragmentWorker)
    sac = SAC(env_spec=env.spec,
              policy=policy,
              qf1=qf1,
              qf2=qf2,
              sampler=sampler,
              gradient_steps_per_itr=100,
              replay_buffer=replay_buffer,
              min_buffer_size=1e3,
              target_update_tau=5e-3,
              discount=0.99,
              buffer_batch_size=64,
              reward_scale=1.,
              steps_per_epoch=2)
    trainer.setup(sac, env)
    if torch.cuda.is_available():
        set_gpu_mode(True)
    else:
        set_gpu_mode(False)
    sac.to()
    trainer.setup(algo=sac, env=env)
    trainer.train(n_epochs=1, batch_size=100)
    log_alpha = torch.clone(sac._log_alpha).cpu()
    set_gpu_mode(False)
    sac.to()
    assert torch.allclose(log_alpha, sac._log_alpha)
Ejemplo n.º 12
0
def test_mtsac_get_log_alpha_incorrect_num_tasks(monkeypatch):
    """Check that if the num_tasks passed does not match the number of tasks

    in the environment, then the algorithm should raise an exception.

    MTSAC uses disentangled alphas, meaning that

    """
    env_names = ['CartPole-v0', 'CartPole-v1']
    task_envs = [GymEnv(name, max_episode_length=150) for name in env_names]
    env = MultiEnvWrapper(task_envs, sample_strategy=round_robin_strategy)
    deterministic.set_seed(0)
    policy = TanhGaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=[1, 1],
        hidden_nonlinearity=torch.nn.ReLU,
        output_nonlinearity=None,
        min_std=np.exp(-20.),
        max_std=np.exp(2.),
    )

    qf1 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[1, 1],
                                 hidden_nonlinearity=F.relu)

    qf2 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[1, 1],
                                 hidden_nonlinearity=F.relu)
    replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), )

    buffer_batch_size = 2
    mtsac = MTSAC(policy=policy,
                  qf1=qf1,
                  qf2=qf2,
                  sampler=None,
                  gradient_steps_per_itr=150,
                  eval_env=[env],
                  env_spec=env.spec,
                  num_tasks=4,
                  steps_per_epoch=5,
                  replay_buffer=replay_buffer,
                  min_buffer_size=1e3,
                  target_update_tau=5e-3,
                  discount=0.99,
                  buffer_batch_size=buffer_batch_size)
    monkeypatch.setattr(mtsac, '_log_alpha', torch.Tensor([1., 2.]))
    error_string = ('The number of tasks in the environment does '
                    'not match self._num_tasks. Are you sure that you passed '
                    'The correct number of tasks?')
    obs = torch.Tensor([env.reset()[0]] * buffer_batch_size)
    with pytest.raises(ValueError, match=error_string):
        mtsac._get_log_alpha(dict(observation=obs))
Ejemplo n.º 13
0
    def test_is_vectorized(self):
        """Test Tanh Gaussian Policy is vectorized."""
        env_spec = TfEnv(DummyBoxEnv())
        init_std = 2.

        policy = TanhGaussianMLPPolicy(env_spec=env_spec,
                                       hidden_sizes=(1, ),
                                       init_std=init_std,
                                       hidden_nonlinearity=None,
                                       std_parameterization='exp',
                                       hidden_w_init=nn.init.ones_,
                                       output_w_init=nn.init.ones_)
        assert policy.vectorized
Ejemplo n.º 14
0
def test_mtsac_get_log_alpha(monkeypatch):
    """Check that the private function _get_log_alpha functions correctly.

    MTSAC uses disentangled alphas, meaning that

    """
    env_names = ['CartPole-v0', 'CartPole-v1']
    task_envs = [GarageEnv(env_name=name) for name in env_names]
    env = MultiEnvWrapper(task_envs, sample_strategy=round_robin_strategy)
    deterministic.set_seed(0)
    policy = TanhGaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=[1, 1],
        hidden_nonlinearity=torch.nn.ReLU,
        output_nonlinearity=None,
        min_std=np.exp(-20.),
        max_std=np.exp(2.),
    )

    qf1 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[1, 1],
                                 hidden_nonlinearity=F.relu)

    qf2 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[1, 1],
                                 hidden_nonlinearity=F.relu)
    replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), )

    num_tasks = 2
    buffer_batch_size = 2
    mtsac = MTSAC(policy=policy,
                  qf1=qf1,
                  qf2=qf2,
                  gradient_steps_per_itr=150,
                  max_path_length=150,
                  eval_env=env,
                  env_spec=env.spec,
                  num_tasks=num_tasks,
                  steps_per_epoch=5,
                  replay_buffer=replay_buffer,
                  min_buffer_size=1e3,
                  target_update_tau=5e-3,
                  discount=0.99,
                  buffer_batch_size=buffer_batch_size)
    monkeypatch.setattr(mtsac, '_log_alpha', torch.Tensor([1., 2.]))
    for i, _ in enumerate(env_names):
        obs = torch.Tensor([env.reset()] * buffer_batch_size)
        log_alpha = mtsac._get_log_alpha(dict(observation=obs))
        assert (log_alpha == torch.Tensor([i + 1, i + 1])).all().item()
        assert log_alpha.size() == torch.Size([mtsac._buffer_batch_size])
Ejemplo n.º 15
0
def test_mtsac_inverted_double_pendulum():
    """Performance regression test of MTSAC on 2 InvDoublePendulum envs."""
    env_names = ['InvertedDoublePendulum-v2', 'InvertedDoublePendulum-v2']
    task_envs = [GymEnv(name, max_episode_length=100) for name in env_names]
    env = MultiEnvWrapper(task_envs, sample_strategy=round_robin_strategy)
    test_envs = MultiEnvWrapper(task_envs,
                                sample_strategy=round_robin_strategy)
    deterministic.set_seed(0)
    trainer = Trainer(snapshot_config=snapshot_config)
    policy = TanhGaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=[32, 32],
        hidden_nonlinearity=torch.nn.ReLU,
        output_nonlinearity=None,
        min_std=np.exp(-20.),
        max_std=np.exp(2.),
    )

    qf1 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[32, 32],
                                 hidden_nonlinearity=F.relu)

    qf2 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[32, 32],
                                 hidden_nonlinearity=F.relu)
    replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), )
    num_tasks = 2
    buffer_batch_size = 128
    sampler = LocalSampler(agents=policy,
                           envs=env,
                           max_episode_length=env.spec.max_episode_length,
                           worker_class=FragmentWorker)
    mtsac = MTSAC(policy=policy,
                  qf1=qf1,
                  qf2=qf2,
                  sampler=sampler,
                  gradient_steps_per_itr=100,
                  eval_env=[test_envs],
                  env_spec=env.spec,
                  num_tasks=num_tasks,
                  steps_per_epoch=5,
                  replay_buffer=replay_buffer,
                  min_buffer_size=1e3,
                  target_update_tau=5e-3,
                  discount=0.99,
                  buffer_batch_size=buffer_batch_size)
    trainer.setup(mtsac, env)
    ret = trainer.train(n_epochs=8, batch_size=128, plot=False)
    assert ret > 0
Ejemplo n.º 16
0
    def test_is_pickleable(self, batch_size, hidden_sizes):
        """Test if policy is unchanged after pickling."""
        env_spec = GymEnv(DummyBoxEnv())
        obs_dim = env_spec.observation_space.flat_dim
        obs = torch.ones([batch_size, obs_dim], dtype=torch.float32)
        init_std = 2.

        policy = TanhGaussianMLPPolicy(env_spec=env_spec,
                                       hidden_sizes=hidden_sizes,
                                       init_std=init_std,
                                       hidden_nonlinearity=None,
                                       std_parameterization='exp',
                                       hidden_w_init=nn.init.ones_,
                                       output_w_init=nn.init.ones_)

        output1_action, output1_prob = policy.get_actions(obs)

        p = pickle.dumps(policy)
        policy_pickled = pickle.loads(p)
        output2_action, output2_prob = policy_pickled.get_actions(obs)
        assert np.allclose(output2_prob['mean'],
                           output1_prob['mean'],
                           rtol=1e-3)
        assert output1_action.shape == output2_action.shape
Ejemplo n.º 17
0
def test_fixed_alpha():
    """Test if using fixed_alpha ensures that alpha is non differentiable."""
    # pylint: disable=unexpected-keyword-arg
    env = normalize(GymEnv('InvertedDoublePendulum-v2',
                           max_episode_length=100))
    deterministic.set_seed(0)
    policy = TanhGaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=[32, 32],
        hidden_nonlinearity=torch.nn.ReLU,
        output_nonlinearity=None,
        min_std=np.exp(-20.),
        max_std=np.exp(2.),
    )

    qf1 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[32, 32],
                                 hidden_nonlinearity=F.relu)

    qf2 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[32, 32],
                                 hidden_nonlinearity=F.relu)
    replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), )
    trainer = Trainer(snapshot_config=snapshot_config)
    sampler = LocalSampler(agents=policy,
                           envs=env,
                           max_episode_length=env.spec.max_episode_length,
                           worker_class=FragmentWorker)
    sac = SAC(env_spec=env.spec,
              policy=policy,
              qf1=qf1,
              qf2=qf2,
              sampler=sampler,
              gradient_steps_per_itr=100,
              replay_buffer=replay_buffer,
              min_buffer_size=100,
              target_update_tau=5e-3,
              discount=0.99,
              buffer_batch_size=64,
              reward_scale=1.,
              steps_per_epoch=1,
              fixed_alpha=np.exp(0.5))
    trainer.setup(sac, env)
    sac.to()
    trainer.train(n_epochs=1, batch_size=100, plot=False)
    assert torch.allclose(torch.Tensor([0.5]), sac._log_alpha.cpu())
    assert not sac._use_automatic_entropy_tuning
Ejemplo n.º 18
0
    def test_to(self):
        """Test Tanh Gaussian Policy can be moved to cpu."""
        env_spec = GymEnv(DummyBoxEnv())
        init_std = 2.

        policy = TanhGaussianMLPPolicy(env_spec=env_spec,
                                       hidden_sizes=(1, ),
                                       init_std=init_std,
                                       hidden_nonlinearity=None,
                                       std_parameterization='exp',
                                       hidden_w_init=nn.init.ones_,
                                       output_w_init=nn.init.ones_)
        if torch.cuda.is_available():
            policy.to(torch.device('cuda:0'))
            assert str(next(policy.parameters()).device) == 'cuda:0'
        else:
            policy.to(None)
            assert str(next(policy.parameters()).device) == 'cpu'
Ejemplo n.º 19
0
def test_sac_inverted_pendulum():
    """Test Sac performance on inverted pendulum."""
    # pylint: disable=unexpected-keyword-arg
    env = GarageEnv(normalize(gym.make('InvertedDoublePendulum-v2')))
    deterministic.set_seed(0)
    policy = TanhGaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=[32, 32],
        hidden_nonlinearity=torch.nn.ReLU,
        output_nonlinearity=None,
        min_std=np.exp(-20.),
        max_std=np.exp(2.),
    )

    qf1 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[32, 32],
                                 hidden_nonlinearity=F.relu)

    qf2 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[32, 32],
                                 hidden_nonlinearity=F.relu)
    replay_buffer = SimpleReplayBuffer(env_spec=env.spec,
                                       size_in_transitions=int(1e6),
                                       time_horizon=1)
    runner = LocalRunner(snapshot_config=snapshot_config)
    sac = SAC(env_spec=env.spec,
              policy=policy,
              qf1=qf1,
              qf2=qf2,
              gradient_steps_per_itr=100,
              max_path_length=100,
              use_automatic_entropy_tuning=True,
              replay_buffer=replay_buffer,
              min_buffer_size=1e3,
              target_update_tau=5e-3,
              discount=0.99,
              buffer_batch_size=64,
              reward_scale=1.,
              steps_per_epoch=2)
    runner.setup(sac, env, sampler_cls=LocalSampler)
    if torch.cuda.is_available():
        tu.set_gpu_mode(True)
    else:
        tu.set_gpu_mode(False)
    sac.to()
    ret = runner.train(n_epochs=12, batch_size=200, plot=False)
    assert ret > 85
Ejemplo n.º 20
0
def load_pearl(env_name="CartPole-v0"):
    """Return an instance of the PEARL algorithm.

    NOTE: currently not working.

    """
    num_train_tasks = 100
    num_test_tasks = 30
    latent_size = 5
    net_size = 300
    encoder_hidden_size = 200
    encoder_hidden_sizes = (encoder_hidden_size, encoder_hidden_size,
                            encoder_hidden_size)

    # Create multi-task environment and sample tasks.
    env_start = GarageEnv(env_name=env_name)
    env_sampler = SetTaskSampler(lambda: GarageEnv(normalize(env_start)))
    env = env_sampler.sample(num_train_tasks)
    test_env_sampler = SetTaskSampler(lambda: GarageEnv(normalize(env_start)))

    # Instantiate networks.
    augmented_env = PEARL.augment_env_spec(env[0](), latent_size)
    qf = ContinuousMLPQFunction(env_spec=augmented_env,
                                hidden_sizes=[net_size, net_size, net_size])

    vf_env = PEARL.get_env_spec(env[0](), latent_size, 'vf')
    vf = ContinuousMLPQFunction(env_spec=vf_env,
                                hidden_sizes=[net_size, net_size, net_size])

    inner_policy = TanhGaussianMLPPolicy(
        env_spec=augmented_env, hidden_sizes=[net_size, net_size, net_size])

    pearl = PEARL(env=env,
                  inner_policy=inner_policy,
                  qf=qf,
                  vf=vf,
                  num_train_tasks=num_train_tasks,
                  num_test_tasks=num_test_tasks,
                  latent_dim=latent_size,
                  encoder_hidden_sizes=encoder_hidden_sizes,
                  test_env_sampler=test_env_sampler)
    return pearl
Ejemplo n.º 21
0
    def test_pickling(self):
        """Test pickle and unpickle."""
        net_size = 10
        env_sampler = SetTaskSampler(PointEnv)
        env = env_sampler.sample(5)

        test_env_sampler = SetTaskSampler(PointEnv)

        augmented_env = PEARL.augment_env_spec(env[0](), 5)
        qf = ContinuousMLPQFunction(
            env_spec=augmented_env,
            hidden_sizes=[net_size, net_size, net_size])

        vf_env = PEARL.get_env_spec(env[0](), 5, 'vf')
        vf = ContinuousMLPQFunction(
            env_spec=vf_env, hidden_sizes=[net_size, net_size, net_size])

        inner_policy = TanhGaussianMLPPolicy(
            env_spec=augmented_env,
            hidden_sizes=[net_size, net_size, net_size])

        pearl = PEARL(env=env,
                      inner_policy=inner_policy,
                      qf=qf,
                      vf=vf,
                      num_train_tasks=5,
                      num_test_tasks=5,
                      latent_dim=5,
                      encoder_hidden_sizes=[10, 10],
                      test_env_sampler=test_env_sampler)

        # This line is just to improve coverage
        pearl.to()

        pickled = pickle.dumps(pearl)
        unpickled = pickle.loads(pickled)

        assert hasattr(unpickled, '_replay_buffers')
        assert hasattr(unpickled, '_context_replay_buffers')
        assert unpickled._is_resuming
    def setup_method(self):
        """Setup for all test methods."""
        self.latent_dim = 5
        self.env_spec = GarageEnv(DummyBoxEnv())
        latent_space = akro.Box(low=-1,
                                high=1,
                                shape=(self.latent_dim, ),
                                dtype=np.float32)

        # add latent space to observation space to create a new space
        augmented_obs_space = akro.Tuple(
            (self.env_spec.observation_space, latent_space))
        augmented_env_spec = EnvSpec(augmented_obs_space,
                                     self.env_spec.action_space)

        self.obs_dim = int(np.prod(self.env_spec.observation_space.shape))
        self.action_dim = int(np.prod(self.env_spec.action_space.shape))
        reward_dim = 1
        self.encoder_input_dim = self.obs_dim + self.action_dim + reward_dim
        encoder_output_dim = self.latent_dim * 2
        encoder_hidden_sizes = (3, 2, encoder_output_dim)

        context_encoder = MLPEncoder(input_dim=self.encoder_input_dim,
                                     output_dim=encoder_output_dim,
                                     hidden_nonlinearity=None,
                                     hidden_sizes=encoder_hidden_sizes,
                                     hidden_w_init=nn.init.ones_,
                                     output_w_init=nn.init.ones_)

        context_policy = TanhGaussianMLPPolicy(env_spec=augmented_env_spec,
                                               hidden_sizes=(3, 5, 7),
                                               hidden_nonlinearity=F.relu,
                                               output_nonlinearity=None)

        self.module = ContextConditionedPolicy(latent_dim=self.latent_dim,
                                               context_encoder=context_encoder,
                                               policy=context_policy,
                                               use_information_bottleneck=True,
                                               use_next_obs=False)
Ejemplo n.º 23
0
def mtsac_metaworld_mt10(ctxt=None, *, seed, _gpu, n_tasks, timesteps):
    """Train MTSAC with MT10 environment.

    Args:
        ctxt (garage.experiment.ExperimentContext): The experiment
            configuration used by Trainer to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.
        _gpu (int): The ID of the gpu to be used (used on multi-gpu machines).
        n_tasks (int): Number of tasks to use. Should be a multiple of 10.
        timesteps (int): Number of timesteps to run.

    """
    deterministic.set_seed(seed)
    trainer = Trainer(ctxt)
    mt10 = metaworld.MT10()  # pylint: disable=no-member
    mt10_test = metaworld.MT10()  # pylint: disable=no-member

    # pylint: disable=missing-return-doc, missing-return-type-doc
    def wrap(env, _):
        return normalize(env, normalize_reward=True)

    train_task_sampler = MetaWorldTaskSampler(mt10,
                                              'train',
                                              wrap,
                                              add_env_onehot=True)
    test_task_sampler = MetaWorldTaskSampler(mt10_test,
                                             'train',
                                             add_env_onehot=True)
    assert n_tasks % 10 == 0
    assert n_tasks <= 500
    mt10_train_envs = train_task_sampler.sample(n_tasks)
    env = mt10_train_envs[0]()
    mt10_test_envs = [env_up() for env_up in test_task_sampler.sample(n_tasks)]

    policy = TanhGaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=[400, 400, 400],
        hidden_nonlinearity=nn.ReLU,
        output_nonlinearity=None,
        min_std=np.exp(-20.),
        max_std=np.exp(2.),
    )

    qf1 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[400, 400, 400],
                                 hidden_nonlinearity=F.relu)

    qf2 = ContinuousMLPQFunction(env_spec=env.spec,
                                 hidden_sizes=[400, 400, 400],
                                 hidden_nonlinearity=F.relu)

    replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), )
    meta_batch_size = 10

    sampler = LocalSampler(
        agents=policy,
        envs=mt10_train_envs,
        max_episode_length=env.spec.max_episode_length,
        # 1 sampler worker for each environment
        n_workers=meta_batch_size,
        worker_class=FragmentWorker,
        # increasing n_envs increases the vectorization of a sampler worker
        # which improves runtime performance, but you will need to adjust this
        # depending on your memory constraints. For reference, each worker by
        # default uses n_envs=8. Each environment is approximately ~50mb large
        # so creating 50 envs with 8 copies comes out to 20gb of memory. Many
        # users want to be able to run multiple seeds on 1 machine, so I have
        # reduced this to n_envs = 2 for 2 copies in the meantime.
        worker_args=dict(n_envs=2))

    batch_size = int(env.spec.max_episode_length * meta_batch_size)
    num_evaluation_points = 500
    epochs = timesteps // batch_size
    epoch_cycles = epochs // num_evaluation_points
    epochs = epochs // epoch_cycles
    mtsac = MTSAC(policy=policy,
                  qf1=qf1,
                  qf2=qf2,
                  sampler=sampler,
                  gradient_steps_per_itr=env.spec.max_episode_length,
                  eval_env=mt10_test_envs,
                  env_spec=env.spec,
                  num_tasks=10,
                  steps_per_epoch=epoch_cycles,
                  replay_buffer=replay_buffer,
                  min_buffer_size=1500,
                  target_update_tau=5e-3,
                  discount=0.99,
                  buffer_batch_size=1280)
    if _gpu is not None:
        set_gpu_mode(True, _gpu)
    mtsac.to()
    trainer.setup(algo=mtsac, env=mt10_train_envs)
    trainer.train(n_epochs=epochs, batch_size=batch_size)
Ejemplo n.º 24
0
    def test_pearl_ml1_push(self):
        """Test PEARL with ML1 Push environment."""
        params = dict(seed=1,
                      num_epochs=1,
                      num_train_tasks=5,
                      latent_size=7,
                      encoder_hidden_sizes=[10, 10, 10],
                      net_size=30,
                      meta_batch_size=16,
                      num_steps_per_epoch=40,
                      num_initial_steps=40,
                      num_tasks_sample=15,
                      num_steps_prior=15,
                      num_extra_rl_steps_posterior=15,
                      batch_size=256,
                      embedding_batch_size=8,
                      embedding_mini_batch_size=8,
                      reward_scale=10.,
                      use_information_bottleneck=True,
                      use_next_obs_in_context=False,
                      use_gpu=False)

        net_size = params['net_size']
        set_seed(params['seed'])
        # create multi-task environment and sample tasks
        ml1 = metaworld.ML1('push-v1')
        train_env = MetaWorldSetTaskEnv(ml1, 'train')
        env_sampler = SetTaskSampler(MetaWorldSetTaskEnv,
                                     env=train_env,
                                     wrapper=lambda env, _: normalize(env))
        env = env_sampler.sample(params['num_train_tasks'])
        test_env = MetaWorldSetTaskEnv(ml1, 'test')
        test_env_sampler = SetTaskSampler(
            MetaWorldSetTaskEnv,
            env=test_env,
            wrapper=lambda env, _: normalize(env))

        augmented_env = PEARL.augment_env_spec(env[0](), params['latent_size'])
        qf = ContinuousMLPQFunction(
            env_spec=augmented_env,
            hidden_sizes=[net_size, net_size, net_size])

        vf_env = PEARL.get_env_spec(env[0](), params['latent_size'], 'vf')
        vf = ContinuousMLPQFunction(
            env_spec=vf_env, hidden_sizes=[net_size, net_size, net_size])

        inner_policy = TanhGaussianMLPPolicy(
            env_spec=augmented_env,
            hidden_sizes=[net_size, net_size, net_size])

        pearl = PEARL(
            env=env,
            policy_class=ContextConditionedPolicy,
            encoder_class=MLPEncoder,
            inner_policy=inner_policy,
            qf=qf,
            vf=vf,
            num_train_tasks=params['num_train_tasks'],
            latent_dim=params['latent_size'],
            encoder_hidden_sizes=params['encoder_hidden_sizes'],
            test_env_sampler=test_env_sampler,
            meta_batch_size=params['meta_batch_size'],
            num_steps_per_epoch=params['num_steps_per_epoch'],
            num_initial_steps=params['num_initial_steps'],
            num_tasks_sample=params['num_tasks_sample'],
            num_steps_prior=params['num_steps_prior'],
            num_extra_rl_steps_posterior=params[
                'num_extra_rl_steps_posterior'],
            batch_size=params['batch_size'],
            embedding_batch_size=params['embedding_batch_size'],
            embedding_mini_batch_size=params['embedding_mini_batch_size'],
            reward_scale=params['reward_scale'],
        )

        set_gpu_mode(params['use_gpu'], gpu_id=0)
        if params['use_gpu']:
            pearl.to()

        trainer = Trainer(snapshot_config)
        trainer.setup(algo=pearl,
                      env=env[0](),
                      sampler_cls=LocalSampler,
                      n_workers=1,
                      worker_class=PEARLWorker)

        trainer.train(n_epochs=params['num_epochs'],
                      batch_size=params['batch_size'])
Ejemplo n.º 25
0
def pearl_metaworld_ml10(ctxt=None,
                         seed=1,
                         num_epochs=1000,
                         num_train_tasks=10,
                         latent_size=7,
                         encoder_hidden_size=200,
                         net_size=300,
                         meta_batch_size=16,
                         num_steps_per_epoch=4000,
                         num_initial_steps=4000,
                         num_tasks_sample=15,
                         num_steps_prior=750,
                         num_extra_rl_steps_posterior=750,
                         batch_size=256,
                         embedding_batch_size=64,
                         embedding_mini_batch_size=64,
                         reward_scale=10.,
                         use_gpu=False):
    """Train PEARL with ML10 environments.

    Args:
        ctxt (garage.experiment.ExperimentContext): The experiment
            configuration used by Trainer to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.
        num_epochs (int): Number of training epochs.
        num_train_tasks (int): Number of tasks for training.
        latent_size (int): Size of latent context vector.
        encoder_hidden_size (int): Output dimension of dense layer of the
            context encoder.
        net_size (int): Output dimension of a dense layer of Q-function and
            value function.
        meta_batch_size (int): Meta batch size.
        num_steps_per_epoch (int): Number of iterations per epoch.
        num_initial_steps (int): Number of transitions obtained per task before
            training.
        num_tasks_sample (int): Number of random tasks to obtain data for each
            iteration.
        num_steps_prior (int): Number of transitions to obtain per task with
            z ~ prior.
        num_extra_rl_steps_posterior (int): Number of additional transitions
            to obtain per task with z ~ posterior that are only used to train
            the policy and NOT the encoder.
        batch_size (int): Number of transitions in RL batch.
        embedding_batch_size (int): Number of transitions in context batch.
        embedding_mini_batch_size (int): Number of transitions in mini context
            batch; should be same as embedding_batch_size for non-recurrent
            encoder.
        reward_scale (int): Reward scale.
        use_gpu (bool): Whether or not to use GPU for training.

    """
    set_seed(seed)
    encoder_hidden_sizes = (encoder_hidden_size, encoder_hidden_size,
                            encoder_hidden_size)
    ml10 = metaworld.ML10()
    train_env = MetaWorldSetTaskEnv(ml10, 'train')
    env_sampler = SetTaskSampler(MetaWorldSetTaskEnv,
                                 env=train_env,
                                 wrapper=lambda env, _: normalize(env))
    env = env_sampler.sample(num_train_tasks)
    test_env = MetaWorldSetTaskEnv(ml10, 'test')
    test_env_sampler = SetTaskSampler(MetaWorldSetTaskEnv,
                                      env=test_env,
                                      wrapper=lambda env, _: normalize(env))

    trainer = Trainer(ctxt)

    # instantiate networks
    augmented_env = PEARL.augment_env_spec(env[0](), latent_size)
    qf = ContinuousMLPQFunction(env_spec=augmented_env,
                                hidden_sizes=[net_size, net_size, net_size])

    vf_env = PEARL.get_env_spec(env[0](), latent_size, 'vf')
    vf = ContinuousMLPQFunction(env_spec=vf_env,
                                hidden_sizes=[net_size, net_size, net_size])

    inner_policy = TanhGaussianMLPPolicy(
        env_spec=augmented_env, hidden_sizes=[net_size, net_size, net_size])

    pearl = PEARL(
        env=env,
        policy_class=ContextConditionedPolicy,
        encoder_class=MLPEncoder,
        inner_policy=inner_policy,
        qf=qf,
        vf=vf,
        num_train_tasks=num_train_tasks,
        latent_dim=latent_size,
        encoder_hidden_sizes=encoder_hidden_sizes,
        test_env_sampler=test_env_sampler,
        meta_batch_size=meta_batch_size,
        num_steps_per_epoch=num_steps_per_epoch,
        num_initial_steps=num_initial_steps,
        num_tasks_sample=num_tasks_sample,
        num_steps_prior=num_steps_prior,
        num_extra_rl_steps_posterior=num_extra_rl_steps_posterior,
        batch_size=batch_size,
        embedding_batch_size=embedding_batch_size,
        embedding_mini_batch_size=embedding_mini_batch_size,
        reward_scale=reward_scale,
    )

    set_gpu_mode(use_gpu, gpu_id=0)
    if use_gpu:
        pearl.to()

    trainer.setup(algo=pearl,
                  env=env[0](),
                  sampler_cls=LocalSampler,
                  n_workers=1,
                  worker_class=PEARLWorker)

    trainer.train(n_epochs=num_epochs, batch_size=batch_size)
def mtsac_metaworld_ml1_pick_place(ctxt=None, seed=1, _gpu=None):
    """Train MTSAC with the ML1 pick-place-v1 environment.

    Args:
        ctxt (garage.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.
        _gpu (int): The ID of the gpu to be used (used on multi-gpu machines).

    """
    deterministic.set_seed(seed)
    runner = LocalRunner(ctxt)
    train_envs = []
    test_envs = []
    env_names = []
    for i in range(50):
        train_env = normalize(
            GymEnv(mwb.ML1.get_train_tasks('pick-place-v1'),
                   normalize_reward=True))
        test_env = pickle.loads(pickle.dumps(train_env))
        env_names.append('pick_place_{}'.format(i))
        train_envs.append(train_env)
        test_envs.append(test_env)
    ml1_train_envs = MultiEnvWrapper(train_envs,
                                     sample_strategy=round_robin_strategy,
                                     env_names=env_names)
    ml1_test_envs = MultiEnvWrapper(test_envs,
                                    sample_strategy=round_robin_strategy,
                                    env_names=env_names)
    policy = TanhGaussianMLPPolicy(
        env_spec=ml1_train_envs.spec,
        hidden_sizes=[400, 400, 400],
        hidden_nonlinearity=nn.ReLU,
        output_nonlinearity=None,
        min_std=np.exp(-20.),
        max_std=np.exp(2.),
    )

    qf1 = ContinuousMLPQFunction(env_spec=ml1_train_envs.spec,
                                 hidden_sizes=[400, 400, 400],
                                 hidden_nonlinearity=F.relu)

    qf2 = ContinuousMLPQFunction(env_spec=ml1_train_envs.spec,
                                 hidden_sizes=[400, 400, 400],
                                 hidden_nonlinearity=F.relu)
    replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), )

    timesteps = 10000000
    batch_size = int(150 * ml1_train_envs.num_tasks)
    num_evaluation_points = 500
    epochs = timesteps // batch_size
    epoch_cycles = epochs // num_evaluation_points
    epochs = epochs // epoch_cycles
    mtsac = MTSAC(policy=policy,
                  qf1=qf1,
                  qf2=qf2,
                  gradient_steps_per_itr=150,
                  max_episode_length=150,
                  eval_env=ml1_test_envs,
                  env_spec=ml1_train_envs.spec,
                  num_tasks=50,
                  steps_per_epoch=epoch_cycles,
                  replay_buffer=replay_buffer,
                  min_buffer_size=1500,
                  target_update_tau=5e-3,
                  discount=0.99,
                  buffer_batch_size=1280)
    if _gpu is not None:
        set_gpu_mode(True, _gpu)
    mtsac.to()
    runner.setup(algo=mtsac, env=ml1_train_envs, sampler_cls=LocalSampler)
    runner.train(n_epochs=epochs, batch_size=batch_size)
Ejemplo n.º 27
0
def tcl_pearl_ml1(ctxt=None,
                  seed=1,
                  num_epochs=200,
                  num_train_tasks=50,
                  num_test_tasks=10,
                  latent_size=7,
                  encoder_hidden_size=200,
                  net_size=300,
                  meta_batch_size=16,
                  num_steps_per_epoch=4000,
                  num_initial_steps=4000,
                  num_tasks_sample=15,
                  num_steps_prior=750,
                  num_extra_rl_steps_posterior=750,
                  batch_size=256,
                  embedding_batch_size=64,
                  embedding_mini_batch_size=64,
                  max_path_length=200,
                  reward_scale=10.,
                  replay_buffer_size=1000000,
                  use_next_obs=False,
                  in_sequence_path_aug=True,
                  emphasized_network=False,
                  use_kl_loss=True,
                  use_q_loss=True,
                  encoder_common_net=True,
                  single_alpha=False,
                  use_task_index_label=False,
                  use_wasserstein_distance=True,
                  gpu_id=0,
                  name='push-v1',
                  prefix='curl_fine_tune',
                  use_gpu=True):
    """Train TCL-PEARL with ML1 environments.
    Args:
        ctxt (garage.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.
        num_epochs (int): Number of training epochs.
        num_train_tasks (int): Number of tasks for training.
        num_test_tasks (int): Number of tasks for testing.
        latent_size (int): Size of latent context vector.
        encoder_hidden_size (int): Output dimension of dense layer of the
            context encoder.
        net_size (int): Output dimension of a dense layer of Q-function and
            value function.
        meta_batch_size (int): Meta batch size.
        num_steps_per_epoch (int): Number of iterations per epoch.
        num_initial_steps (int): Number of transitions obtained per task before
            training.
        num_tasks_sample (int): Number of random tasks to obtain data for each
            iteration.
        num_steps_prior (int): Number of transitions to obtain per task with
            z ~ prior.
        num_extra_rl_steps_posterior (int): Number of additional transitions
            to obtain per task with z ~ posterior that are only used to train
            the policy and NOT the encoder.
        batch_size (int): Number of transitions in RL batch.
        embedding_batch_size (int): Number of transitions in context batch.
        embedding_mini_batch_size (int): Number of transitions in mini context
            batch; should be same as embedding_batch_size for non-recurrent
            encoder.
        max_path_length (int): Maximum path length.
        reward_scale (int): Reward scale.
        use_gpu (bool): Whether or not to use GPU for training.
    """
    set_seed(seed)
    encoder_hidden_sizes = (encoder_hidden_size, encoder_hidden_size,
                            encoder_hidden_size)
    print("Running experiences on {}/{}".format(prefix, name))
    # create multi-task environment and sample tasks
    ml1 = metaworld.ML1(name)
    train_env = MetaWorldSetTaskEnv(ml1, 'train')
    env_sampler = SetTaskSampler(MetaWorldSetTaskEnv,
                                 env=train_env,
                                 wrapper=lambda env, _: normalize(env))
    env = env_sampler.sample(num_train_tasks)
    test_env = MetaWorldSetTaskEnv(ml1, 'test')
    test_env_sampler = SetTaskSampler(MetaWorldSetTaskEnv,
                                      env=test_env,
                                      wrapper=lambda env, _: normalize(env))
    sampler = LocalSampler(agents=None,
                           envs=env[0](),
                           max_episode_length=max_path_length,
                           n_workers=1,
                           worker_class=TCLPEARLWorker)
    trainer = Trainer(ctxt)

    # instantiate networks
    augmented_env = TCLPEARL.augment_env_spec(env[0](), latent_size)
    qf_1 = ContinuousMLPQFunction(env_spec=augmented_env,
                                  hidden_sizes=[net_size, net_size, net_size])

    qf_2 = ContinuousMLPQFunction(env_spec=augmented_env,
                                  hidden_sizes=[net_size, net_size, net_size])

    inner_policy = TanhGaussianMLPPolicy(
        env_spec=augmented_env, hidden_sizes=[net_size, net_size, net_size])

    tcl_pearl = TCLPEARL(
        env=env,
        policy_class=TCLPolicy,
        encoder_class=ContrastiveEncoder,
        inner_policy=inner_policy,
        qf1=qf_1,
        qf2=qf_2,
        sampler=sampler,
        num_train_tasks=num_train_tasks,
        num_test_tasks=num_test_tasks,
        latent_dim=latent_size,
        encoder_hidden_sizes=encoder_hidden_sizes,
        test_env_sampler=test_env_sampler,
        meta_batch_size=meta_batch_size,
        num_steps_per_epoch=num_steps_per_epoch,
        num_initial_steps=num_initial_steps,
        num_tasks_sample=num_tasks_sample,
        num_steps_prior=num_steps_prior,
        num_extra_rl_steps_posterior=num_extra_rl_steps_posterior,
        batch_size=batch_size,
        embedding_batch_size=embedding_batch_size,
        embedding_mini_batch_size=embedding_mini_batch_size,
        max_path_length=max_path_length,
        reward_scale=reward_scale,
        replay_buffer_size=replay_buffer_size,
        use_next_obs_in_context=use_next_obs,
        embedding_batch_in_sequence=in_sequence_path_aug,
        use_kl_loss=use_kl_loss,
        use_q_loss=use_q_loss,
        encoder_common_net=encoder_common_net,
        single_alpha=single_alpha,
        use_task_index_label=use_task_index_label,
        use_wasserstein_distance=use_wasserstein_distance)
    set_gpu_mode(use_gpu, gpu_id=gpu_id)
    if use_gpu:
        tcl_pearl.to()

    trainer.setup(algo=tcl_pearl, env=env[0]())

    trainer.train(n_epochs=num_epochs, batch_size=batch_size)
Ejemplo n.º 28
0
def test_methods():
    """Test PEARLWorker methods."""
    env_spec = GarageEnv(DummyBoxEnv())
    latent_dim = 5
    latent_space = akro.Box(low=-1,
                            high=1,
                            shape=(latent_dim, ),
                            dtype=np.float32)

    # add latent space to observation space to create a new space
    augmented_obs_space = akro.Tuple(
        (env_spec.observation_space, latent_space))
    augmented_env_spec = EnvSpec(augmented_obs_space, env_spec.action_space)

    obs_dim = int(np.prod(env_spec.observation_space.shape))
    action_dim = int(np.prod(env_spec.action_space.shape))
    reward_dim = 1
    encoder_input_dim = obs_dim + action_dim + reward_dim
    encoder_output_dim = latent_dim * 2
    encoder_hidden_sizes = (3, 2, encoder_output_dim)

    context_encoder = MLPEncoder(input_dim=encoder_input_dim,
                                 output_dim=encoder_output_dim,
                                 hidden_nonlinearity=None,
                                 hidden_sizes=encoder_hidden_sizes,
                                 hidden_w_init=nn.init.ones_,
                                 output_w_init=nn.init.ones_)

    policy = TanhGaussianMLPPolicy(env_spec=augmented_env_spec,
                                   hidden_sizes=(3, 5, 7),
                                   hidden_nonlinearity=F.relu,
                                   output_nonlinearity=None)

    context_policy = ContextConditionedPolicy(latent_dim=latent_dim,
                                              context_encoder=context_encoder,
                                              policy=policy,
                                              use_information_bottleneck=True,
                                              use_next_obs=False)

    max_path_length = 20
    worker1 = PEARLWorker(seed=1,
                          max_path_length=max_path_length,
                          worker_number=1)
    worker1.update_agent(context_policy)
    worker1.update_env(env_spec)
    rollouts = worker1.rollout()

    assert rollouts.observations.shape == (max_path_length, obs_dim)
    assert rollouts.actions.shape == (max_path_length, action_dim)
    assert rollouts.rewards.shape == (max_path_length, )

    worker2 = PEARLWorker(seed=1,
                          max_path_length=max_path_length,
                          worker_number=1,
                          deterministic=True,
                          accum_context=True)
    worker2.update_agent(context_policy)
    worker2.update_env(env_spec)
    rollouts = worker2.rollout()

    assert context_policy.context.shape == (1, max_path_length,
                                            encoder_input_dim)
    assert rollouts.observations.shape == (max_path_length, obs_dim)
    assert rollouts.actions.shape == (max_path_length, action_dim)
    assert rollouts.rewards.shape == (max_path_length, )
Ejemplo n.º 29
0
def pearl_half_cheetah(
        ctxt=None,
        seed=1,
        num_epochs=param_num_epoches,
        num_train_tasks=param_train_tasks_num,
        num_test_tasks=param_test_tasks_num,
        latent_size=param_latent_size,
        encoder_hidden_size=param_encoder_hidden_size,
        net_size=param_net_size,
        meta_batch_size=param_meta_batch_size,
        num_steps_per_epoch=param_num_steps_per_epoch,
        num_initial_steps=param_num_initial_steps,
        num_tasks_sample=param_num_tasks_sample,
        num_steps_prior=param_num_steps_prior,
        num_extra_rl_steps_posterior=param_num_extra_rl_steps_posterior,
        batch_size=param_batch_size,
        embedding_batch_size=param_embedding_batch_size,
        embedding_mini_batch_size=param_embedding_mini_batch_size,
        max_path_length=param_max_path_length,
        reward_scale=param_reward_scale,
        use_gpu=param_use_gpu):
    set_seed(seed)
    encoder_hidden_sizes = (encoder_hidden_size, encoder_hidden_size,
                            encoder_hidden_size)
    # create multi-task environment and sample tasks
    env_sampler = SetTaskSampler(
        lambda: GarageEnv(normalize(HalfCheetahVelEnv())))
    env = env_sampler.sample(num_train_tasks)
    test_env_sampler = SetTaskSampler(
        lambda: GarageEnv(normalize(HalfCheetahVelEnv())))

    runner = LocalRunner(ctxt)

    # instantiate networks
    augmented_env = PEARL.augment_env_spec(env[0](), latent_size)
    qf = ContinuousMLPQFunction(env_spec=augmented_env,
                                hidden_sizes=[net_size, net_size, net_size])

    vf_env = PEARL.get_env_spec(env[0](), latent_size, 'vf')
    vf = ContinuousMLPQFunction(env_spec=vf_env,
                                hidden_sizes=[net_size, net_size, net_size])

    inner_policy = TanhGaussianMLPPolicy(
        env_spec=augmented_env, hidden_sizes=[net_size, net_size, net_size])

    pearl = PEARL(
        env=env,
        policy_class=ContextConditionedPolicy,
        encoder_class=MLPEncoder,
        inner_policy=inner_policy,
        qf=qf,
        vf=vf,
        num_train_tasks=num_train_tasks,
        num_test_tasks=num_test_tasks,
        latent_dim=latent_size,
        encoder_hidden_sizes=encoder_hidden_sizes,
        test_env_sampler=test_env_sampler,
        meta_batch_size=meta_batch_size,
        num_steps_per_epoch=num_steps_per_epoch,
        num_initial_steps=num_initial_steps,
        num_tasks_sample=num_tasks_sample,
        num_steps_prior=num_steps_prior,
        num_extra_rl_steps_posterior=num_extra_rl_steps_posterior,
        batch_size=batch_size,
        embedding_batch_size=embedding_batch_size,
        embedding_mini_batch_size=embedding_mini_batch_size,
        max_path_length=max_path_length,
        reward_scale=reward_scale,
    )

    tu.set_gpu_mode(use_gpu, gpu_id=0)
    if use_gpu:
        pearl.to()

    runner.setup(algo=pearl,
                 env=env[0](),
                 sampler_cls=LocalSampler,
                 sampler_args=dict(max_path_length=max_path_length),
                 n_workers=1,
                 worker_class=PEARLWorker)

    average_returns = runner.train(n_epochs=num_epochs, batch_size=batch_size)
    runner.save(num_epochs - 1)

    return average_returns
Ejemplo n.º 30
0
def diayn_pearl_half_cheeth(
        ctxt=None,
        seed=1,
        num_epochs=param_num_epoches,
        num_train_tasks=param_train_tasks_num,
        num_test_tasks=param_test_tasks_num,
        latent_size=param_latent_size,
        encoder_hidden_size=param_encoder_hidden_size,
        net_size=param_net_size,
        meta_batch_size=param_meta_batch_size,
        num_steps_per_epoch=param_num_steps_per_epoch,
        num_initial_steps=param_num_initial_steps,
        num_tasks_sample=param_num_tasks_sample,
        num_steps_prior=param_num_steps_prior,
        num_extra_rl_steps_posterior=param_num_extra_rl_steps_posterior,
        batch_size=param_batch_size,
        embedding_batch_size=param_embedding_batch_size,
        embedding_mini_batch_size=param_embedding_mini_batch_size,
        max_path_length=param_max_path_length,
        reward_scale=param_reward_scale,
        use_gpu=param_use_gpu):
    if task_proposer is None:
        raise ValueError("Task proposer is empty")

    assert num_train_tasks is skills_num

    set_seed(seed)
    encoder_hidden_sizes = (encoder_hidden_size, encoder_hidden_size,
                            encoder_hidden_size)
    # create multi-task environment and sample tasks

    ML_train_envs = [
        DiaynEnvWrapper(task_proposer, skills_num, task_name,
                        normalize(HalfCheetahVelEnv()))
        for task_name in range(skills_num)
    ]
    env_sampler = EnvPoolSampler(ML_train_envs)
    env = env_sampler.sample(num_train_tasks)

    # train_trajs_dist = [train_env.get_training_traj(diayn_trained_agent)
    #               for train_env in ML_train_envs]

    # ML_test_envs = [
    #     GarageEnv(normalize(
    #         DiaynEnvWrapper(env, task_proposer, skills_num, task_name)))
    #     for task_name in random.sample(range(skills_num), test_tasks_num)
    # ]

    test_env_sampler = SetTaskSampler(
        lambda: GarageEnv(normalize(HalfCheetahVelEnv())))

    runner = LocalRunner(ctxt)

    # instantiate networks
    augmented_env = PEARL.augment_env_spec(env[0](), latent_size)
    qf = ContinuousMLPQFunction(env_spec=augmented_env,
                                hidden_sizes=[net_size, net_size, net_size])

    vf_env = PEARL.get_env_spec(env[0](), latent_size, 'vf')
    vf = ContinuousMLPQFunction(env_spec=vf_env,
                                hidden_sizes=[net_size, net_size, net_size])

    inner_policy = TanhGaussianMLPPolicy(
        env_spec=augmented_env, hidden_sizes=[net_size, net_size, net_size])

    pearl = PEARL(
        env=env,
        policy_class=ContextConditionedPolicy,
        encoder_class=MLPEncoder,
        inner_policy=inner_policy,
        qf=qf,
        vf=vf,
        num_train_tasks=num_train_tasks,
        num_test_tasks=num_test_tasks,
        latent_dim=latent_size,
        encoder_hidden_sizes=encoder_hidden_sizes,
        test_env_sampler=test_env_sampler,
        meta_batch_size=meta_batch_size,
        num_steps_per_epoch=num_steps_per_epoch,
        num_initial_steps=num_initial_steps,
        num_tasks_sample=num_tasks_sample,
        num_steps_prior=num_steps_prior,
        num_extra_rl_steps_posterior=num_extra_rl_steps_posterior,
        batch_size=batch_size,
        embedding_batch_size=embedding_batch_size,
        embedding_mini_batch_size=embedding_mini_batch_size,
        max_path_length=max_path_length,
        reward_scale=reward_scale,
    )

    tu.set_gpu_mode(use_gpu, gpu_id=0)
    if use_gpu:
        pearl.to()

    runner.setup(algo=pearl,
                 env=env[0](),
                 sampler_cls=LocalSampler,
                 sampler_args=dict(max_path_length=max_path_length),
                 n_workers=1,
                 worker_class=PEARLWorker)

    average_returns = runner.train(n_epochs=num_epochs, batch_size=batch_size)
    runner.save(num_epochs - 1)

    return average_returns