Ejemplo n.º 1
0
ax[0].errorbar(phase[mask], mag[mask], dmag[mask], fmt='o', color='#666666')
ax[0].errorbar(phase[~mask], mag[~mask], dmag[~mask], fmt='o', color='#CCCCCC')
ax[0].invert_yaxis()

for fit_offset in [False, True]:
    i = int(fit_offset)
    model = LombScargle(fit_offset=fit_offset).fit(t[mask], mag[mask],
                                                   dmag[mask])
    P = model.periodogram(periods)
    if fit_offset:
        label = 'floating mean'
    else:
        label = 'standard'
    lines = ax[0].plot(phasefit,
                       model.predict(tfit, period=rrlyrae.period),
                       label=label)
    ax[1 + i].plot(periods, P, lw=1, c=lines[0].get_color())
    ax[1 + i].set_title('{0} Periodogram'.format(label.title()))
    ax[1 + i].set_ylabel('power')
    ax[1 + i].set_ylim(0, 1)
    ax[1 + i].set_xlim(0.2, 1.4)

ax[0].legend(loc='upper left')
ax[0].set_xlabel('phase')
ax[0].set_ylabel('magnitude')
ax[0].set_title('Phased data (period=0.622 days)')

ax[1].xaxis.set_major_formatter(plt.NullFormatter())
ax[2].set_xlabel('Period (days)')
Ejemplo n.º 2
0
      fig.add_subplot(gs[0, 1])]

# Plot the data
ax[0].errorbar(t, mag, dmag, fmt='o', color='#333333')
ax[1].errorbar(phase, mag, dmag, fmt='.', color='#888888')

# Fit and plot the model
model = LombScargle().fit(t, mag, dmag)
model.optimizer.period_range = (0.2, 1.2)

phase = (t / model.best_period) % 1
phasefit = np.linspace(0, 1, 1000)
tfit = model.best_period * phasefit
        
lines = ax[2].plot(periods, model.periodogram(periods), lw=1)
ax[1].plot(phasefit, model.predict(tfit),
           c=lines[0].get_color())
ax[1].invert_yaxis()

ax[0].set_xlabel('date of observation (MJD)')
ax[0].set_ylabel('magnitude')
ax[0].set_title('Input Data')
ax[0].invert_yaxis()

ax[1].set_title('Folded Data (P={0:.3f} days)'.format(rrlyrae.period))
ax[1].set_xlabel('phase')
ax[1].yaxis.set_major_locator(plt.MultipleLocator(0.2))

ax[2].set_title('Periodogram')
ax[2].set_xlabel('period (days)')
ax[2].set_ylabel('power')
Ejemplo n.º 3
0
for i in range(2):
    fig, ax = plt.subplots(2, 2, figsize=(10, 4), sharex='col')
    fig.subplots_adjust(left=0.07, right=0.95, wspace=0.1, bottom=0.15)

    if i == 0:
        ind = np.arange(Nobs) % 5
        y = mags[ind, np.arange(Nobs)]
        f = np.array(filts)[ind]
    else:
        arrs = np.broadcast_arrays(t, mags, dy, filts[:, None])
        t, y, dy, f = map(np.ravel, arrs)

    model1 = LombScargle()
    model1.fit(t, y, dy)
    yfit = model1.predict(tfit, period=period)

    plot_data(ax[0, 0], t, y, dy, f)
    ax[0, 0].plot(tfit / period, yfit, '-', color='gray', lw=4, alpha=0.5)
    ax[0, 1].plot(periods, model1.score(periods), color='gray')
    ax[0, 0].set_xlabel('')

    model2 = LombScargleMultiband(Nterms_base=1, Nterms_band=1)
    model2.fit(t, y, dy, f)
    yfits = model2.predict(tfit, filts=filts[:, None], period=period)

    plot_data(ax[1, 0], t, y, dy, f)
    for j in range(5):
        ax[1, 0].plot(tfit / period, yfits[j])
    ax[1, 1].plot(periods, model2.score(periods))
Ejemplo n.º 4
0
plot_data(ax)
ax.set_title('Input Data')
plt.savefig('buildup_1.png')

# Plot the base model
fig, ax = plt.subplots()
plot_data(ax)

t_all = np.ravel(t * np.ones_like(mags))
mags_all = np.ravel(mags)
dy_all = np.ravel(dy * np.ones_like(mags))
basemodel = LombScargle(Nterms=2).fit(t_all, mags_all, dy_all)

period = rrlyrae.period
tfit = np.linspace(0, period, 1000)
base_fit = basemodel.predict(tfit, period=period)

ax.plot(tfit / period, base_fit, color='black', lw=5, alpha=0.5)
ax.set_title('2-term Base Model')

# Plot the band-by-band augmentation
multimodel = LombScargleMultiband(Nterms_base=2, Nterms_band=1)
t1, y1, dy1, f1 = map(np.ravel,
                      np.broadcast_arrays(t, mags, dy, filts[:, None]))
multimodel.fit(t1, y1, dy1, f1)


yfits = multimodel.predict(tfit, filts=filts[:, None], period=period)
plt.savefig('buildup_2.png')

fig, ax = plt.subplots()
Ejemplo n.º 5
0
               color='#666666')
ax[0].errorbar(phase[~mask], mag[~mask], dmag[~mask], fmt='o',
               color='#CCCCCC')
ax[0].invert_yaxis()

for fit_offset in [False, True]:
    i = int(fit_offset)
    model = LombScargle(fit_offset=fit_offset).fit(t[mask],
                                                   mag[mask], dmag[mask])
    P = model.periodogram(periods)
    if fit_offset:
        label = 'floating mean'
    else:
        label = 'standard'
    lines = ax[0].plot(phasefit,
                       model.predict(tfit, period=rrlyrae.period),
                       label=label)
    ax[1 + i].plot(periods, P, lw=1, c=lines[0].get_color())
    ax[1 + i].set_title('{0} Periodogram'.format(label.title()))
    ax[1 + i].set_ylabel('power')
    ax[1 + i].set_ylim(0, 1)
    ax[1 + i].set_xlim(0.2, 1.4)

ax[0].legend(loc='upper left')
ax[0].set_xlabel('phase')
ax[0].set_ylabel('magnitude')
ax[0].set_title('Phased data (period=0.622 days)')

ax[1].xaxis.set_major_formatter(plt.NullFormatter())
ax[2].set_xlabel('Period (days)')
Ejemplo n.º 6
0
    # Plot the data
    ax[0].errorbar(phase, mag, dmag, fmt='o', color='#AAAAAA')

    # Plot the fits
    for i, Nterms in enumerate(models):
        model = LombScargle(Nterms=Nterms).fit(t, mag, dmag)
        P = model.periodogram(periods)

        label = "{0} terms".format(Nterms)
        if Nterms == 1:
            label = label[:-1]

        alpha = 1.0 if (Nterms < 20) else 0.5

        lines = ax[0].plot(phasefit, model.predict(tfit, period=rrlyrae.period),
                           label=label, alpha=alpha)

        ax[1 + i].plot(periods, model.periodogram(periods),
                       color=lines[0].get_color(), lw=1)
        ax[1 + i].set_title("{0}-term Periodogram".format(Nterms))
        ax[1 + i].set_xlim(0.2, 1.4)
        ax[1 + i].set_ylim(0, 1)

    ax[2].set_ylabel('power')
    ax[3].set_xlabel('period (days)')
    for i in [1, 2]:
        ax[i].xaxis.set_major_formatter(plt.NullFormatter())

    ax[0].set_xlabel('phase')
    ax[0].set_ylabel('magnitude')
Ejemplo n.º 7
0
]

# Plot the data
ax[0].errorbar(t, mag, dmag, fmt='o', color='#333333')
ax[1].errorbar(phase, mag, dmag, fmt='.', color='#888888')

# Fit and plot the model
model = LombScargle().fit(t, mag, dmag)
model.optimizer.period_range = (0.2, 1.2)

phase = (t / model.best_period) % 1
phasefit = np.linspace(0, 1, 1000)
tfit = model.best_period * phasefit

lines = ax[2].plot(periods, model.periodogram(periods), lw=1)
ax[1].plot(phasefit, model.predict(tfit), c=lines[0].get_color())
ax[1].invert_yaxis()

ax[0].set_xlabel('date of observation (MJD)')
ax[0].set_ylabel('magnitude')
ax[0].set_title('Input Data')
ax[0].invert_yaxis()

ax[1].set_title('Folded Data (P={0:.3f} days)'.format(rrlyrae.period))
ax[1].set_xlabel('phase')
ax[1].yaxis.set_major_locator(plt.MultipleLocator(0.2))

ax[2].set_title('Periodogram')
ax[2].set_xlabel('period (days)')
ax[2].set_ylabel('power')
ax[2].set_xlim(0.2, 1.4)