t, p = stats.ttest_rel(exp2_econ_part, exp3_econ_part) print('Economic decision making:\nt=%s, p=%s ' % (t, p)) # ----------------- # 3. Prepare figure # ----------------- # Figure properties fig_ratio = 0.65 fig_witdh = 15 linewidth = 1 markersize = 2 fontsize = 6 # Create figure f = plt.figure(figsize=cm2inch(fig_witdh, fig_ratio * fig_witdh)) # Create plot grid gs0 = gridspec.GridSpec(18, 16, left=0.075, right=0.99, top=0.95, bottom=0.08, hspace=100, wspace=10) # ---------------------------- # 4. Plot task trial schematic # ---------------------------- # Create subplot grid and axis gs00 = gridspec.GridSpecFromSubplotSpec(1, 8, subplot_spec=gs0[0:7, 0:8], wspace=0) ax_0 = plt.Subplot(f, gs00[:]) f.add_subplot(ax_0) # Picture paths path = ['gb_figures/patches.png', 'gb_figures/fix_cross.png', 'gb_figures/fractals.png',
# Figure properties low_alpha = 0.3 medium_alpha = 0.6 high_alpha = 1 blue_1 = '#46b3e6' blue_2 = '#4d80e4' blue_3 = '#2e279d' green_1 = '#94ed88' green_2 = '#52d681' green_3 = '#00ad7c' fig_ratio = 0.65 fig_witdh = 15 fig_heigth = 10 # Create figure f = plt.figure(figsize=cm2inch(fig_witdh, fig_heigth)) # Create plot grid gs = gridspec.GridSpec(nrows=4, ncols=6, left=0.1, right=0.99, wspace=1.5, top=0.95, bottom=0.1, hspace=0.5) # ----------------------------- # 3. Plot posterior predictions # -----------------------------
for i in range(0, len(p_hat.o)): # Set current agent variables agent.c_t = np.asarray(C_t[t]) # coefficient agent.o_t = p_hat.o[ i] # observation todo: adjust for sampling-based validation # p_{t-1}(\mu|r_t = 0, o_t) analytical result agent.learn(p_hat.r_e[r]) pdf_mu_giv_r_t_o_t[:, i, r] = np.polyval(agent.c_t, p_hat.mu) # Initialize figure # ----------------- fig_width = 15 fig_height = 20 f = plt.figure(figsize=cm2inch(fig_width, fig_height)) ax_0 = plt.subplot2grid((4, 4), (0, 0), colspan=2) ax_1 = plt.subplot2grid((4, 4), (0, 2)) ax_2 = plt.subplot2grid((4, 4), (0, 3)) ax_3 = plt.subplot2grid((4, 4), (1, 0), colspan=2) ax_4 = plt.subplot2grid((4, 4), (1, 2), colspan=2) ax_5 = plt.subplot2grid((4, 4), (2, 0), colspan=2) ax_6 = plt.subplot2grid((4, 4), (2, 2), colspan=2) ax_7 = plt.subplot2grid((4, 4), (3, 0)) ax_8 = plt.subplot2grid((4, 4), (3, 1)) ax_9 = plt.subplot2grid((4, 4), (3, 2)) ax_10 = plt.subplot2grid((4, 4), (3, 3)) barcolor = "slategray" # p_t(\mu)