def __dense_block(x, nb_layers, nb_filter, growth_rate, bottleneck=False, dropout_rate=None, weight_decay=1e-4,
                  grow_nb_filters=True, return_concat_list=False):
    ''' Build a dense_block where the output of each conv_block is fed to subsequent ones
    Args:
        x: keras tensor
        nb_layers: the number of layers of conv_block to append to the model.
        nb_filter: number of filters
        growth_rate: growth rate
        bottleneck: bottleneck block
        dropout_rate: dropout rate
        weight_decay: weight decay factor
        grow_nb_filters: flag to decide to allow number of filters to grow
        return_concat_list: return the list of feature maps along with the actual output
    Returns: keras tensor with nb_layers of conv_block appended
    '''
    concat_axis = 1 if K.image_data_format() == 'channels_first' else -1

    x_list = [x]

    for i in range(nb_layers):
        cb = __conv_block(x, growth_rate, bottleneck, dropout_rate, weight_decay)
        x_list.append(cb)

        x = concatenate([x, cb], axis=concat_axis)

        if grow_nb_filters:
            nb_filter += growth_rate

    # global context block
    x = global_context_block(x)

    if return_concat_list:
        return x, nb_filter, x_list
    else:
        return x, nb_filter
def _resnet_block(input, filters, k=1, strides=(1, 1)):
    ''' Adds a pre-activation resnet block without bottleneck layers

    Args:
        input: input tensor
        filters: number of output filters
        k: width factor
        strides: strides of the convolution layer

    Returns: a keras tensor
    '''
    init = input
    channel_axis = 1 if K.image_data_format() == "channels_first" else -1

    x = BatchNormalization(axis=channel_axis)(input)
    x = Activation('relu')(x)

    if strides != (1, 1) or init._keras_shape[channel_axis] != filters * k:
        init = Conv2D(filters * k, (1, 1), padding='same', kernel_initializer='he_normal',
                      use_bias=False, strides=strides)(x)

    x = Conv2D(filters * k, (3, 3), padding='same', kernel_initializer='he_normal',
               use_bias=False, strides=strides)(x)
    x = BatchNormalization(axis=channel_axis)(x)
    x = Activation('relu')(x)

    x = Conv2D(filters * k, (3, 3), padding='same', kernel_initializer='he_normal',
               use_bias=False)(x)

    # global context block
    x = global_context_block(x)

    m = add([x, init])
    return m
def __transition_block(ip, nb_filter, compression=1.0, weight_decay=1e-4):
    ''' Apply BatchNorm, Relu 1x1, Conv2D, optional compression, dropout and Maxpooling2D
    Args:
        ip: keras tensor
        nb_filter: number of filters
        compression: calculated as 1 - reduction. Reduces the number of feature maps
                    in the transition block.
        dropout_rate: dropout rate
        weight_decay: weight decay factor
    Returns: keras tensor, after applying batch_norm, relu-conv, dropout, maxpool
    '''
    concat_axis = 1 if K.image_data_format() == 'channels_first' else -1

    x = BatchNormalization(axis=concat_axis, epsilon=1.1e-5)(ip)
    x = Activation('relu')(x)
    x = Conv2D(int(nb_filter * compression), (1, 1), kernel_initializer='he_normal', padding='same', use_bias=False,
               kernel_regularizer=l2(weight_decay))(x)
    x = AveragePooling2D((2, 2), strides=(2, 2))(x)

    # global context block
    x = global_context_block(x)

    return x
def SEInceptionV3(include_top=True,
                  weights=None,
                  input_tensor=None,
                  input_shape=None,
                  pooling=None,
                  classes=1000):
    """Instantiates the Global Context Inception v3 architecture.

    # Arguments
        include_top: whether to include the fully-connected
            layer at the top of the network.
        weights: one of `None` (random initialization)
            or "imagenet" (pre-training on ImageNet).
        input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
            to use as image input for the model.
        input_shape: optional shape tuple, only to be specified
            if `include_top` is False (otherwise the input shape
            has to be `(299, 299, 3)` (with `channels_last` data format)
            or `(3, 299, 299)` (with `channels_first` data format).
            It should have exactly 3 inputs channels,
            and width and height should be no smaller than 139.
            E.g. `(150, 150, 3)` would be one valid value.
        pooling: Optional pooling mode for feature extraction
            when `include_top` is `False`.
            - `None` means that the output of the model will be
                the 4D tensor output of the
                last convolutional layer.
            - `avg` means that global average pooling
                will be applied to the output of the
                last convolutional layer, and thus
                the output of the model will be a 2D tensor.
            - `max` means that global max pooling will
                be applied.
        classes: optional number of classes to classify images
            into, only to be specified if `include_top` is True, and
            if no `weights` argument is specified.

    # Returns
        A Keras model instance.

    # Raises
        ValueError: in case of invalid argument for `weights`,
            or invalid input shape.
    """
    if weights not in {'imagenet', None}:
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization) or `imagenet` '
                         '(pre-training on ImageNet).')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError('If using `weights` as imagenet with `include_top`'
                         ' as true, `classes` should be 1000')

    # Determine proper input shape
    input_shape = _obtain_input_shape(input_shape,
                                      default_size=299,
                                      min_size=139,
                                      data_format=K.image_data_format(),
                                      require_flatten=include_top)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    if K.image_data_format() == 'channels_first':
        channel_axis = 1
    else:
        channel_axis = 3

    x = _conv2d_bn(img_input, 32, 3, 3, strides=(2, 2), padding='valid')
    x = _conv2d_bn(x, 32, 3, 3, padding='valid')
    x = _conv2d_bn(x, 64, 3, 3)
    x = MaxPooling2D((3, 3), strides=(2, 2))(x)

    x = _conv2d_bn(x, 80, 1, 1, padding='valid')
    x = _conv2d_bn(x, 192, 3, 3, padding='valid')
    x = MaxPooling2D((3, 3), strides=(2, 2))(x)

    # mixed 0, 1, 2: 35 x 35 x 256
    branch1x1 = _conv2d_bn(x, 64, 1, 1)

    branch5x5 = _conv2d_bn(x, 48, 1, 1)
    branch5x5 = _conv2d_bn(branch5x5, 64, 5, 5)

    branch3x3dbl = _conv2d_bn(x, 64, 1, 1)
    branch3x3dbl = _conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch3x3dbl = _conv2d_bn(branch3x3dbl, 96, 3, 3)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = _conv2d_bn(branch_pool, 32, 1, 1)
    x = layers.concatenate([branch1x1, branch5x5, branch3x3dbl, branch_pool],
                           axis=channel_axis,
                           name='mixed0')

    # global context block
    x = global_context_block(x)

    # mixed 1: 35 x 35 x 256
    branch1x1 = _conv2d_bn(x, 64, 1, 1)

    branch5x5 = _conv2d_bn(x, 48, 1, 1)
    branch5x5 = _conv2d_bn(branch5x5, 64, 5, 5)

    branch3x3dbl = _conv2d_bn(x, 64, 1, 1)
    branch3x3dbl = _conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch3x3dbl = _conv2d_bn(branch3x3dbl, 96, 3, 3)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = _conv2d_bn(branch_pool, 64, 1, 1)
    x = layers.concatenate([branch1x1, branch5x5, branch3x3dbl, branch_pool],
                           axis=channel_axis,
                           name='mixed1')

    # global context block
    x = global_context_block(x)

    # mixed 2: 35 x 35 x 256
    branch1x1 = _conv2d_bn(x, 64, 1, 1)

    branch5x5 = _conv2d_bn(x, 48, 1, 1)
    branch5x5 = _conv2d_bn(branch5x5, 64, 5, 5)

    branch3x3dbl = _conv2d_bn(x, 64, 1, 1)
    branch3x3dbl = _conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch3x3dbl = _conv2d_bn(branch3x3dbl, 96, 3, 3)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = _conv2d_bn(branch_pool, 64, 1, 1)
    x = layers.concatenate([branch1x1, branch5x5, branch3x3dbl, branch_pool],
                           axis=channel_axis,
                           name='mixed2')

    # global context block
    x = global_context_block(x)

    # mixed 3: 17 x 17 x 768
    branch3x3 = _conv2d_bn(x, 384, 3, 3, strides=(2, 2), padding='valid')

    branch3x3dbl = _conv2d_bn(x, 64, 1, 1)
    branch3x3dbl = _conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch3x3dbl = _conv2d_bn(branch3x3dbl,
                              96,
                              3,
                              3,
                              strides=(2, 2),
                              padding='valid')

    branch_pool = MaxPooling2D((3, 3), strides=(2, 2))(x)
    x = layers.concatenate([branch3x3, branch3x3dbl, branch_pool],
                           axis=channel_axis,
                           name='mixed3')

    # global context block
    x = global_context_block(x)

    # mixed 4: 17 x 17 x 768
    branch1x1 = _conv2d_bn(x, 192, 1, 1)

    branch7x7 = _conv2d_bn(x, 128, 1, 1)
    branch7x7 = _conv2d_bn(branch7x7, 128, 1, 7)
    branch7x7 = _conv2d_bn(branch7x7, 192, 7, 1)

    branch7x7dbl = _conv2d_bn(x, 128, 1, 1)
    branch7x7dbl = _conv2d_bn(branch7x7dbl, 128, 7, 1)
    branch7x7dbl = _conv2d_bn(branch7x7dbl, 128, 1, 7)
    branch7x7dbl = _conv2d_bn(branch7x7dbl, 128, 7, 1)
    branch7x7dbl = _conv2d_bn(branch7x7dbl, 192, 1, 7)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = _conv2d_bn(branch_pool, 192, 1, 1)
    x = layers.concatenate([branch1x1, branch7x7, branch7x7dbl, branch_pool],
                           axis=channel_axis,
                           name='mixed4')

    # global context block
    x = global_context_block(x)

    # mixed 5, 6: 17 x 17 x 768
    for i in range(2):
        branch1x1 = _conv2d_bn(x, 192, 1, 1)

        branch7x7 = _conv2d_bn(x, 160, 1, 1)
        branch7x7 = _conv2d_bn(branch7x7, 160, 1, 7)
        branch7x7 = _conv2d_bn(branch7x7, 192, 7, 1)

        branch7x7dbl = _conv2d_bn(x, 160, 1, 1)
        branch7x7dbl = _conv2d_bn(branch7x7dbl, 160, 7, 1)
        branch7x7dbl = _conv2d_bn(branch7x7dbl, 160, 1, 7)
        branch7x7dbl = _conv2d_bn(branch7x7dbl, 160, 7, 1)
        branch7x7dbl = _conv2d_bn(branch7x7dbl, 192, 1, 7)

        branch_pool = AveragePooling2D((3, 3), strides=(1, 1),
                                       padding='same')(x)
        branch_pool = _conv2d_bn(branch_pool, 192, 1, 1)
        x = layers.concatenate(
            [branch1x1, branch7x7, branch7x7dbl, branch_pool],
            axis=channel_axis,
            name='mixed' + str(5 + i))

        # global context block
        x = global_context_block(x)

    # mixed 7: 17 x 17 x 768
    branch1x1 = _conv2d_bn(x, 192, 1, 1)

    branch7x7 = _conv2d_bn(x, 192, 1, 1)
    branch7x7 = _conv2d_bn(branch7x7, 192, 1, 7)
    branch7x7 = _conv2d_bn(branch7x7, 192, 7, 1)

    branch7x7dbl = _conv2d_bn(x, 192, 1, 1)
    branch7x7dbl = _conv2d_bn(branch7x7dbl, 192, 7, 1)
    branch7x7dbl = _conv2d_bn(branch7x7dbl, 192, 1, 7)
    branch7x7dbl = _conv2d_bn(branch7x7dbl, 192, 7, 1)
    branch7x7dbl = _conv2d_bn(branch7x7dbl, 192, 1, 7)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = _conv2d_bn(branch_pool, 192, 1, 1)
    x = layers.concatenate([branch1x1, branch7x7, branch7x7dbl, branch_pool],
                           axis=channel_axis,
                           name='mixed7')

    # global context block
    x = global_context_block(x)

    # mixed 8: 8 x 8 x 1280
    branch3x3 = _conv2d_bn(x, 192, 1, 1)
    branch3x3 = _conv2d_bn(branch3x3,
                           320,
                           3,
                           3,
                           strides=(2, 2),
                           padding='valid')

    branch7x7x3 = _conv2d_bn(x, 192, 1, 1)
    branch7x7x3 = _conv2d_bn(branch7x7x3, 192, 1, 7)
    branch7x7x3 = _conv2d_bn(branch7x7x3, 192, 7, 1)
    branch7x7x3 = _conv2d_bn(branch7x7x3,
                             192,
                             3,
                             3,
                             strides=(2, 2),
                             padding='valid')

    branch_pool = MaxPooling2D((3, 3), strides=(2, 2))(x)
    x = layers.concatenate([branch3x3, branch7x7x3, branch_pool],
                           axis=channel_axis,
                           name='mixed8')

    # global context block
    x = global_context_block(x)

    # mixed 9: 8 x 8 x 2048
    for i in range(2):
        branch1x1 = _conv2d_bn(x, 320, 1, 1)

        branch3x3 = _conv2d_bn(x, 384, 1, 1)
        branch3x3_1 = _conv2d_bn(branch3x3, 384, 1, 3)
        branch3x3_2 = _conv2d_bn(branch3x3, 384, 3, 1)
        branch3x3 = layers.concatenate([branch3x3_1, branch3x3_2],
                                       axis=channel_axis,
                                       name='mixed9_' + str(i))

        branch3x3dbl = _conv2d_bn(x, 448, 1, 1)
        branch3x3dbl = _conv2d_bn(branch3x3dbl, 384, 3, 3)
        branch3x3dbl_1 = _conv2d_bn(branch3x3dbl, 384, 1, 3)
        branch3x3dbl_2 = _conv2d_bn(branch3x3dbl, 384, 3, 1)
        branch3x3dbl = layers.concatenate([branch3x3dbl_1, branch3x3dbl_2],
                                          axis=channel_axis)

        branch_pool = AveragePooling2D((3, 3), strides=(1, 1),
                                       padding='same')(x)
        branch_pool = _conv2d_bn(branch_pool, 192, 1, 1)
        x = layers.concatenate(
            [branch1x1, branch3x3, branch3x3dbl, branch_pool],
            axis=channel_axis,
            name='mixed' + str(9 + i))

        # global context block
        x = global_context_block(x)

    if include_top:
        # Classification block
        x = GlobalAveragePooling2D(name='avg_pool')(x)
        x = Dense(classes, activation='softmax', name='predictions')(x)
    else:
        if pooling == 'avg':
            x = GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = Model(inputs, x, name='inception_v3')

    return model
def inception_resnet_block(x, scale, block_type, block_idx, activation='relu'):
    """Adds a Inception-ResNet block with Global Context block at the end.
    This function builds 3 types of Inception-ResNet blocks mentioned
    in the paper, controlled by the `block_type` argument (which is the
    block name used in the official TF-slim implementation):
        - Inception-ResNet-A: `block_type='block35'`
        - Inception-ResNet-B: `block_type='block17'`
        - Inception-ResNet-C: `block_type='block8'`
    # Arguments
        x: input tensor.
        scale: scaling factor to scale the residuals (i.e., the output of
            passing `x` through an inception module) before adding them
            to the shortcut branch. Let `r` be the output from the residual branch,
            the output of this block will be `x + scale * r`.
        block_type: `'block35'`, `'block17'` or `'block8'`, determines
            the network structure in the residual branch.
        block_idx: an `int` used for generating layer names. The Inception-ResNet blocks
            are repeated many times in this network. We use `block_idx` to identify
            each of the repetitions. For example, the first Inception-ResNet-A block
            will have `block_type='block35', block_idx=0`, ane the layer names will have
            a common prefix `'block35_0'`.
        activation: activation function to use at the end of the block
            (see [activations](../activations.md)).
            When `activation=None`, no activation is applied
            (i.e., "linear" activation: `a(x) = x`).
    # Returns
        Output tensor for the block.
    # Raises
        ValueError: if `block_type` is not one of `'block35'`,
            `'block17'` or `'block8'`.
    """
    if block_type == 'block35':
        branch_0 = conv2d_bn(x, 32, 1)
        branch_1 = conv2d_bn(x, 32, 1)
        branch_1 = conv2d_bn(branch_1, 32, 3)
        branch_2 = conv2d_bn(x, 32, 1)
        branch_2 = conv2d_bn(branch_2, 48, 3)
        branch_2 = conv2d_bn(branch_2, 64, 3)
        branches = [branch_0, branch_1, branch_2]
    elif block_type == 'block17':
        branch_0 = conv2d_bn(x, 192, 1)
        branch_1 = conv2d_bn(x, 128, 1)
        branch_1 = conv2d_bn(branch_1, 160, [1, 7])
        branch_1 = conv2d_bn(branch_1, 192, [7, 1])
        branches = [branch_0, branch_1]
    elif block_type == 'block8':
        branch_0 = conv2d_bn(x, 192, 1)
        branch_1 = conv2d_bn(x, 192, 1)
        branch_1 = conv2d_bn(branch_1, 224, [1, 3])
        branch_1 = conv2d_bn(branch_1, 256, [3, 1])
        branches = [branch_0, branch_1]
    else:
        raise ValueError('Unknown Inception-ResNet block type. '
                         'Expects "block35", "block17" or "block8", '
                         'but got: ' + str(block_type))

    block_name = block_type + '_' + str(block_idx)
    channel_axis = 1 if K.image_data_format() == 'channels_first' else 3
    mixed = Concatenate(axis=channel_axis, name=block_name + '_mixed')(branches)
    up = conv2d_bn(mixed,
                   K.int_shape(x)[channel_axis],
                   1,
                   activation=None,
                   use_bias=True,
                   name=block_name + '_conv')

    x = Lambda(lambda inputs, scale: inputs[0] + inputs[1] * scale,
               output_shape=K.int_shape(x)[1:],
               arguments={'scale': scale},
               name=block_name)([x, up])
    if activation is not None:
        x = Activation(activation, name=block_name + '_ac')(x)

    # global context block
    x = global_context_block(x)
    return x
def SEInceptionResNetV2(include_top=True,
                        weights=None,
                        input_tensor=None,
                        input_shape=None,
                        pooling=None,
                        classes=1000):
    """Instantiates the SE-Inception-ResNet v2 architecture.
    Optionally loads weights pre-trained on ImageNet.
    Note that when using TensorFlow, for best performance you should
    set `"image_data_format": "channels_last"` in your Keras config
    at `~/.keras/keras.json`.
    The model and the weights are compatible with both TensorFlow and Theano
    backends (but not CNTK). The data format convention used by the model is
    the one specified in your Keras config file.
    Note that the default input image size for this model is 299x299, instead
    of 224x224 as in the VGG16 and ResNet models. Also, the input preprocessing
    function is different (i.e., do not use `imagenet_utils.preprocess_input()`
    with this model. Use `preprocess_input()` defined in this module instead).
    # Arguments
        include_top: whether to include the fully-connected
            layer at the top of the network.
        weights: one of `None` (random initialization)
            or `'imagenet'` (pre-training on ImageNet).
        input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
            to use as image input for the model.
        input_shape: optional shape tuple, only to be specified
            if `include_top` is `False` (otherwise the input shape
            has to be `(299, 299, 3)` (with `'channels_last'` data format)
            or `(3, 299, 299)` (with `'channels_first'` data format).
            It should have exactly 3 inputs channels,
            and width and height should be no smaller than 139.
            E.g. `(150, 150, 3)` would be one valid value.
        pooling: Optional pooling mode for feature extraction
            when `include_top` is `False`.
            - `None` means that the output of the model will be
                the 4D tensor output of the last convolutional layer.
            - `'avg'` means that global average pooling
                will be applied to the output of the
                last convolutional layer, and thus
                the output of the model will be a 2D tensor.
            - `'max'` means that global max pooling will be applied.
        classes: optional number of classes to classify images
            into, only to be specified if `include_top` is `True`, and
            if no `weights` argument is specified.
    # Returns
        A Keras `Model` instance.
    # Raises
        ValueError: in case of invalid argument for `weights`,
            or invalid input shape.
        RuntimeError: If attempting to run this model with an unsupported backend.
    """
    if K.backend() in {'cntk'}:
        raise RuntimeError(K.backend() + ' backend is currently unsupported for this model.')

    if weights not in {'imagenet', None}:
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization) or `imagenet` '
                         '(pre-training on ImageNet).')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError('If using `weights` as imagenet with `include_top`'
                         ' as true, `classes` should be 1000')

    # Determine proper input shape
    input_shape = _obtain_input_shape(
        input_shape,
        default_size=299,
        min_size=139,
        data_format=K.image_data_format(),
        require_flatten=False,
        weights=weights)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    # Stem block: 35 x 35 x 192
    x = conv2d_bn(img_input, 32, 3, strides=2, padding='valid')
    x = conv2d_bn(x, 32, 3, padding='valid')
    x = conv2d_bn(x, 64, 3)
    x = MaxPooling2D(3, strides=2)(x)
    x = conv2d_bn(x, 80, 1, padding='valid')
    x = conv2d_bn(x, 192, 3, padding='valid')
    x = MaxPooling2D(3, strides=2)(x)

    # Mixed 5b (Inception-A block): 35 x 35 x 320
    branch_0 = conv2d_bn(x, 96, 1)
    branch_1 = conv2d_bn(x, 48, 1)
    branch_1 = conv2d_bn(branch_1, 64, 5)
    branch_2 = conv2d_bn(x, 64, 1)
    branch_2 = conv2d_bn(branch_2, 96, 3)
    branch_2 = conv2d_bn(branch_2, 96, 3)
    branch_pool = AveragePooling2D(3, strides=1, padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 64, 1)
    branches = [branch_0, branch_1, branch_2, branch_pool]
    channel_axis = 1 if K.image_data_format() == 'channels_first' else 3
    x = Concatenate(axis=channel_axis, name='mixed_5b')(branches)

    # global context block
    x = global_context_block(x)

    # 10x block35 (Inception-ResNet-A block): 35 x 35 x 320
    for block_idx in range(1, 11):
        x = inception_resnet_block(x,
                                   scale=0.17,
                                   block_type='block35',
                                   block_idx=block_idx)

    # Mixed 6a (Reduction-A block): 17 x 17 x 1088
    branch_0 = conv2d_bn(x, 384, 3, strides=2, padding='valid')
    branch_1 = conv2d_bn(x, 256, 1)
    branch_1 = conv2d_bn(branch_1, 256, 3)
    branch_1 = conv2d_bn(branch_1, 384, 3, strides=2, padding='valid')
    branch_pool = MaxPooling2D(3, strides=2, padding='valid')(x)
    branches = [branch_0, branch_1, branch_pool]
    x = Concatenate(axis=channel_axis, name='mixed_6a')(branches)

    # global context block
    x = global_context_block(x)

    # 20x block17 (Inception-ResNet-B block): 17 x 17 x 1088
    for block_idx in range(1, 21):
        x = inception_resnet_block(x,
                                   scale=0.1,
                                   block_type='block17',
                                   block_idx=block_idx)

    # Mixed 7a (Reduction-B block): 8 x 8 x 2080
    branch_0 = conv2d_bn(x, 256, 1)
    branch_0 = conv2d_bn(branch_0, 384, 3, strides=2, padding='valid')
    branch_1 = conv2d_bn(x, 256, 1)
    branch_1 = conv2d_bn(branch_1, 288, 3, strides=2, padding='valid')
    branch_2 = conv2d_bn(x, 256, 1)
    branch_2 = conv2d_bn(branch_2, 288, 3)
    branch_2 = conv2d_bn(branch_2, 320, 3, strides=2, padding='valid')
    branch_pool = MaxPooling2D(3, strides=2, padding='valid')(x)
    branches = [branch_0, branch_1, branch_2, branch_pool]
    x = Concatenate(axis=channel_axis, name='mixed_7a')(branches)

    # global_context block
    x = global_context_block(x)

    # 10x block8 (Inception-ResNet-C block): 8 x 8 x 2080
    for block_idx in range(1, 10):
        x = inception_resnet_block(x,
                                   scale=0.2,
                                   block_type='block8',
                                   block_idx=block_idx)
    x = inception_resnet_block(x,
                               scale=1.,
                               activation=None,
                               block_type='block8',
                               block_idx=10)

    # global context block
    x = global_context_block(x)

    # Final convolution block: 8 x 8 x 1536
    x = conv2d_bn(x, 1536, 1, name='conv_7b')

    if include_top:
        # Classification block
        x = GlobalAveragePooling2D(name='avg_pool')(x)
        x = Dense(classes, activation='softmax', name='predictions')(x)
    else:
        if pooling == 'avg':
            x = GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # Create model
    model = Model(inputs, x, name='se_inception_resnet_v2')

    return model
Ejemplo n.º 7
0
def _depthwise_conv_block(inputs,
                          pointwise_conv_filters,
                          alpha,
                          depth_multiplier=1,
                          strides=(1, 1),
                          block_id=1):
    """Adds a depthwise convolution block.
    A depthwise convolution block consists of a depthwise conv,
    batch normalization, relu6, pointwise convolution,
    batch normalization and relu6 activation.
    # Arguments
        inputs: Input tensor of shape `(rows, cols, channels)`
            (with `channels_last` data format) or
            (channels, rows, cols) (with `channels_first` data format).
        pointwise_conv_filters: Integer, the dimensionality of the output space
            (i.e. the number output of filters in the pointwise convolution).
        alpha: controls the width of the network.
            - If `alpha` < 1.0, proportionally decreases the number
                of filters in each layer.
            - If `alpha` > 1.0, proportionally increases the number
                of filters in each layer.
            - If `alpha` = 1, default number of filters from the paper
                 are used at each layer.
        depth_multiplier: The number of depthwise convolution output channels
            for each input channel.
            The total number of depthwise convolution output
            channels will be equal to `filters_in * depth_multiplier`.
        strides: An integer or tuple/list of 2 integers,
            specifying the strides of the convolution along the width and height.
            Can be a single integer to specify the same value for
            all spatial dimensions.
            Specifying any stride value != 1 is incompatible with specifying
            any `dilation_rate` value != 1.
        block_id: Integer, a unique identification designating the block number.
    # Input shape
        4D tensor with shape:
        `(batch, channels, rows, cols)` if data_format='channels_first'
        or 4D tensor with shape:
        `(batch, rows, cols, channels)` if data_format='channels_last'.
    # Output shape
        4D tensor with shape:
        `(batch, filters, new_rows, new_cols)` if data_format='channels_first'
        or 4D tensor with shape:
        `(batch, new_rows, new_cols, filters)` if data_format='channels_last'.
        `rows` and `cols` values might have changed due to stride.
    # Returns
        Output tensor of block.
    """
    channel_axis = 1 if K.image_data_format() == 'channels_first' else -1
    pointwise_conv_filters = int(pointwise_conv_filters * alpha)

    x = DepthwiseConv2D((3, 3),
                        padding='same',
                        depth_multiplier=depth_multiplier,
                        strides=strides,
                        use_bias=False,
                        name='conv_dw_%d' % block_id)(inputs)
    x = BatchNormalization(axis=channel_axis,
                           name='conv_dw_%d_bn' % block_id)(x)
    x = Activation(relu6, name='conv_dw_%d_relu' % block_id)(x)

    x = Conv2D(pointwise_conv_filters, (1, 1),
               padding='same',
               use_bias=False,
               strides=(1, 1),
               name='conv_pw_%d' % block_id)(x)
    x = BatchNormalization(axis=channel_axis,
                           name='conv_pw_%d_bn' % block_id)(x)
    x = Activation(relu6, name='conv_pw_%d_relu' % block_id)(x)

    # global context block
    x = global_context_block(x)
    return x