def test_view_peak_indices(): """Prints dataset information to the console. """ dataset_file = join(get_test_data_path(), 'gclda_dataset.pkl') dset = Dataset.load(dataset_file) captured_output = StringIO() # Create StringIO object sys.stdout = captured_output # and redirect stdout. dset.view_peak_indices(n_peak_indices=5) # Call unchanged function. sys.stdout = sys.__stdout__ # Reset redirect. assert len(captured_output.getvalue()) > 0
def test_save_dataset2(): """Test gclda.dataset.Dataset.save with gzipped file. """ dataset_file = join(get_test_data_path(), 'gclda_dataset.pklz') temp_file = join(get_test_data_path(), 'temp.pklz') dset = Dataset.load(dataset_file) dset.save(temp_file) file_found = isfile(temp_file) assert file_found # Perform cleanup remove(temp_file)
def test_init(): """Smoke test for Model class. """ dataset_file = join(get_test_data_path(), 'gclda_dataset.pkl') dset = Dataset.load(dataset_file) model = Model(dset, n_topics=50, n_regions=1, symmetric=False, alpha=.1, beta=.01, gamma=.01, delta=1., dobs=25, roi_size=10., seed_init=1) assert isinstance(model, Model)
def test_symmetric(): """Test running a model with symmetric ROIs. """ dataset_file = join(get_test_data_path(), 'gclda_dataset.pkl') dset = Dataset.load(dataset_file) model = Model(dset, n_topics=50, n_regions=2, symmetric=True, alpha=.1, beta=.01, gamma=.01, delta=1., dobs=25, roi_size=10., seed_init=1) initial_iter = model.iter model.run_complete_iteration() assert model.iter == initial_iter + 1
def test_init(): """Smoke test for Dataset class. """ dataset_dir = get_test_data_path() dset = Dataset('dataset_files', dataset_dir) assert isinstance(dset, Dataset)
def test_load_dataset2(): """Test gclda.dataset.Dataset.load with gzipped file. """ dataset_file = join(get_test_data_path(), 'gclda_dataset.pklz') dset = Dataset.load(dataset_file) assert isinstance(dset, Dataset)
""" ############################################################################### # Start with the necessary imports # -------------------------------- from os.path import join from gclda.dataset import Dataset from gclda.model import Model from gclda.utils import get_resource_path ############################################################################### # Initialize dataset # ---------------------------------- dataset_label = 'Neurosynth2015Filtered2_1000docs' dataset_dir = join(get_resource_path(), 'datasets') dataset = Dataset(dataset_label, dataset_dir) dataset.display_dataset_summary() ############################################################################### # Initialize model # ---------------------- model = Model(dataset, n_topics=200, n_regions=2, alpha=.1, beta=.01, gamma=.01, delta=1.0, dobs=25, roi_size=50, symmetric=True,