Ejemplo n.º 1
0
def _get_config():
    config = get_default_config()
    params = {
        "model.py": "example_model.model_multimodal:GCN",
        "save_result_test": "../result/test.multimodal.csv",
        "save_result_train": "../result/train.multimodal.csv",
        "load_model": "../model/model.sample_multimodal.ckpt",
        "save_model": "../model/model.sample_multimodal.ckpt",
        "validation_data_rate": 0.3,
        "embedding_dim": 4,
        "epoch": 1,
        "with_feature": True,
        "batch_size": 10,
        "save_interval": 10,
        "learning_rate": 0.3,
        "with_node_embedding": False,
        "save_model_path": "model",
        "patience": 0,
        "dataset": "../example_jbl/sample.jbl"
    }
    for k, v in params.items():
        config[k] = v
    return config
Ejemplo n.º 2
0
                        default=None,
                        nargs='?',
                        help='config json file')
    parser.add_argument('--save-config',
                        default=None,
                        nargs='?',
                        help='save config json file')
    parser.add_argument('--no-config',
                        action='store_true',
                        help='use default setting')
    parser.add_argument('--model', type=str, default=None, help='model')
    parser.add_argument('--dataset', type=str, default=None, help='dataset')

    args = parser.parse_args()
    # config
    config = get_default_config()
    if args.config is None:
        pass
        #parser.print_help()
        #quit()
    else:
        print("[LOAD] ", args.config)
        fp = open(args.config, 'r')
        config.update(json.load(fp))
    # option
    if args.model is not None:
        config["load_model"] = args.model
    if args.dataset is not None:
        config["dataset"] = args.dataset
    # setup
    with tf.Graph().as_default():