Ejemplo n.º 1
0
def _bigquery_to_vcf_shards(
        known_args,  # type: argparse.Namespace
        beam_pipeline_options,  # type: pipeline_options.PipelineOptions
        vcf_data_temp_folder,  # type: str
        header_file_path,  # type: str
):
    # type: (...) -> None
    """Runs BigQuery to VCF shards pipelines.

  It reads the variants from BigQuery table, groups a collection of variants
  within a contiguous region of the genome (the size of the collection is
  adjustable through flag `--number_of_bases_per_shard`), sorts them, and then
  writes to one VCF file. All VCF data files are saved in
  `vcf_data_temp_folder`.

  Also, it writes the meta info and data header with the call names to
  `vcf_header_file_path`.
  """
    schema = _get_schema(known_args.input_table)
    # TODO(allieychen): Modify the SQL query with the specified call_names.
    query = _get_bigquery_query(known_args, schema)
    logging.info('Processing BigQuery query %s:', query)
    bq_source = bigquery.BigQuerySource(query=query,
                                        validate=True,
                                        use_standard_sql=True)
    annotation_names = _extract_annotation_names(schema)
    with beam.Pipeline(options=beam_pipeline_options) as p:
        variants = (p
                    | 'ReadFromBigQuery ' >> beam.io.Read(bq_source)
                    | bigquery_to_variant.BigQueryToVariant(annotation_names))
        if known_args.call_names:
            call_names = (p
                          | transforms.Create(known_args.call_names)
                          | beam.combiners.ToList())
        else:
            call_names = (
                variants
                | 'CombineCallNames' >> combine_call_names.CallNamesCombiner(
                    known_args.preserve_call_names_order))

        _ = (call_names
             | 'GenerateVcfDataHeader' >> beam.ParDo(
                 _write_vcf_header_with_call_names, _VCF_FIXED_COLUMNS,
                 known_args.representative_header_file, header_file_path))

        _ = (variants
             | densify_variants.DensifyVariants(
                 beam.pvalue.AsSingleton(call_names))
             | 'PairVariantWithKey' >> beam.Map(
                 _pair_variant_with_key, known_args.number_of_bases_per_shard)
             | 'GroupVariantsByKey' >> beam.GroupByKey()
             | beam.ParDo(_get_file_path_and_sorted_variants,
                          vcf_data_temp_folder)
             | vcfio.WriteVcfDataLines())
Ejemplo n.º 2
0
def _bigquery_to_vcf_shards(
        known_args,  # type: argparse.Namespace
        beam_pipeline_options,  # type: pipeline_options.PipelineOptions
        vcf_data_temp_folder,  # type: str
        vcf_data_header_file_path,  # type: str
):
    # type: (...) -> None
    """Runs BigQuery to VCF shards pipelines.

  It reads the variants from BigQuery table, groups a collection of variants
  within a contiguous region of the genome (the size of the collection is
  adjustable through flag `--number_of_bases_per_shard`), sorts them, and then
  writes to one VCF file. All VCF data files are saved in
  `vcf_data_temp_folder`.

  Also, it writes the data header to `vcf_data_header_file_path`.
  TODO(allieychen): Eventually, it also generates the meta information file.
  """
    bq_source = bigquery.BigQuerySource(
        query=_BASE_QUERY_TEMPLATE.format(INPUT_TABLE='.'.join(
            bigquery_util.parse_table_reference(known_args.input_table))),
        validate=True,
        use_standard_sql=True)

    with beam.Pipeline(options=beam_pipeline_options) as p:
        variants = (p
                    | 'ReadFromBigQuery ' >> beam.io.Read(bq_source)
                    | bigquery_to_variant.BigQueryToVariant())
        call_names = (
            variants
            | 'CombineCallNames' >> combine_call_names.CallNamesCombiner())

        _ = (call_names
             | 'GenerateVcfDataHeader' >> beam.ParDo(
                 _write_vcf_data_header, _VCF_FIXED_COLUMNS,
                 vcf_data_header_file_path))

        _ = (variants
             | densify_variants.DensifyVariants(
                 beam.pvalue.AsSingleton(call_names))
             | 'PairVariantWithKey' >> beam.Map(
                 _pair_variant_with_key, known_args.number_of_bases_per_shard)
             | 'GroupVariantsByKey' >> beam.GroupByKey()
             | beam.ParDo(_get_file_path_and_sorted_variants,
                          vcf_data_temp_folder)
             | vcfio.WriteVcfDataLines())
def _bigquery_to_vcf_shards(
        known_args,  # type: argparse.Namespace
        beam_pipeline_options,  # type: pipeline_options.PipelineOptions
        vcf_data_temp_folder,  # type: str
        header_file_path,  # type: str
):
    # type: (...) -> None
    """Runs BigQuery to VCF shards pipelines.

  It reads the variants from BigQuery table, groups a collection of variants
  within a contiguous region of the genome (the size of the collection is
  adjustable through flag `--number_of_bases_per_shard`), sorts them, and then
  writes to one VCF file. All VCF data files are saved in
  `vcf_data_temp_folder`.

  Also, it writes the meta info and data header with the sample names to
  `vcf_header_file_path`.
  """
    schema = _get_schema(known_args.input_table)
    variant_query = _get_variant_query(known_args, schema)
    logging.info('Processing BigQuery query %s:', variant_query)
    project_id, dataset_id, table_id = bigquery_util.parse_table_reference(
        known_args.input_table)
    bq_variant_source = bigquery.BigQuerySource(query=variant_query,
                                                validate=True,
                                                use_standard_sql=True)
    annotation_names = _extract_annotation_names(schema)

    base_table_id = bigquery_util.get_table_base_name(table_id)
    sample_query = _SAMPLE_INFO_QUERY_TEMPLATE.format(
        PROJECT_ID=project_id,
        DATASET_ID=dataset_id,
        TABLE_NAME=bigquery_util.compose_table_name(base_table_id,
                                                    SAMPLE_INFO_TABLE_SUFFIX))
    bq_sample_source = bigquery.BigQuerySource(query=sample_query,
                                               validate=True,
                                               use_standard_sql=True)
    with beam.Pipeline(options=beam_pipeline_options) as p:
        variants = (p
                    | 'ReadFromBigQuery ' >> beam.io.Read(bq_variant_source)
                    | bigquery_to_variant.BigQueryToVariant(annotation_names))
        sample_table_rows = (
            p
            | 'ReadFromSampleTable' >> beam.io.Read(bq_sample_source))
        if known_args.sample_names:
            temp_sample_names = (p
                                 | transforms.Create(known_args.sample_names,
                                                     reshuffle=False))
        else:
            # Get sample names from sample IDs in the variants and sort.
            id_to_name_hash_table = (sample_table_rows
                                     | 'SampleIdToNameDict' >>
                                     sample_mapping_table.SampleIdToNameDict())
            temp_sample_ids = (
                variants
                | 'CombineSampleIds' >> combine_sample_ids.SampleIdsCombiner(
                    known_args.preserve_sample_order))
            temp_sample_names = (
                temp_sample_ids
                | 'GetSampleNames' >> sample_mapping_table.GetSampleNames(
                    beam.pvalue.AsSingleton(id_to_name_hash_table))
                | 'CombineToList' >> beam.combiners.ToList()
                | 'SortSampleNames' >> beam.ParDo(sorted))

        name_to_id_hash_table = (
            sample_table_rows
            |
            'SampleNameToIdDict' >> sample_mapping_table.SampleNameToIdDict())
        sample_ids = (temp_sample_names
                      | 'GetSampleIds' >> sample_mapping_table.GetSampleIds(
                          beam.pvalue.AsSingleton(name_to_id_hash_table))
                      | 'CombineSortedSampleIds' >> beam.combiners.ToList())
        sample_names = temp_sample_names | beam.combiners.ToList()

        _ = (sample_names
             | 'GenerateVcfDataHeader' >> beam.ParDo(
                 _write_vcf_header_with_sample_names, _VCF_FIXED_COLUMNS,
                 known_args.representative_header_file, header_file_path))

        _ = (variants
             | densify_variants.DensifyVariants(
                 beam.pvalue.AsSingleton(sample_ids))
             | 'PairVariantWithKey' >> beam.Map(
                 _pair_variant_with_key, known_args.number_of_bases_per_shard)
             | 'GroupVariantsByKey' >> beam.GroupByKey()
             | beam.ParDo(_get_file_path_and_sorted_variants,
                          vcf_data_temp_folder)
             | vcfio.WriteVcfDataLines(known_args.bq_uses_1_based_coordinate))