Ejemplo n.º 1
0
    def make_slits_reservoir(self, nslit, pitch, width, contact_distance, layers): # 5 additional slits as material reservoir
        res_slit = 5

        gap = contact_distance + 2. + 2.  
        res_length = (length - gap - 2.5*margin)/2 
        res_width = width
        res_pitch = pitch

        resField = Cell("resField")

        reservoir = Cell("Single Reservoir")
        res_path = Path([(-res_length / 2., 0), (res_length / 2., 0)], width = res_width, layer = layers)
        reservoir.add(res_path)

        reservoirs= CellArray(reservoir, 2, res_slit, spacing = (res_length + gap, res_pitch))
        reservoirs.translate((-(res_length + gap)/2,0))
        res_array = Cell("Multiple Slit")
        res_array.add(reservoirs)
        resField.add(res_array, origin=(0,0), rotation=rot_angle)

        if contact_distance > margin:
            add_slit = Cell("Additional Reservoir")
            add_res_path = Path([(-(contact_distance - 0.8*margin) / 2., 0), ((contact_distance - 0.8*margin) / 2., 0)], width = res_width, layer = layers)
            add_slit.add(add_res_path)

            add_reservoir = CellArray(add_slit, 1, res_slit, spacing = (0, res_pitch))
            add_reservoir.translate((0,0))
            add_res_array = Cell("Additional Multiple Slit")
            add_res_array.add(add_reservoir)
            resField.add(add_res_array, origin=(0,0), rotation=rot_angle)



        self.add(resField, origin= (0,(nslit+1) * pitch/2 ))
        self.add(resField, origin= (0, -((nslit+1+(2*(res_slit-1))) * pitch/2 )))
    def make_branch_device_array(self, spacing, _widths, array_height,
                                 array_width, array_spacing, len_inner,
                                 len_outer, n_membranes, layers):
        if not (type(layers) == list):
            layers = [layers]
        if not (type(_widths) == list):
            _widths = [_widths]
        for l in layers:
            i = -1
            j = 0
            manydevices = Cell("ManyDevices")
            for width in _widths:
                device = self.make_branch_device(width, spacing, len_inner,
                                                 len_outer, n_membranes, l)
                [[x_min, y_min], [x_max, y_max]] = device.bounding_box
                x_size = abs(x_max - x_min)
                y_size = abs(y_max - y_min)

                i += 1
                if i % 3 == 0:
                    j += 1  # Move to array to next line
                    i = 0  # Restart at left

                nx = int(array_width / (x_size + spacing))
                ny = int(array_height / (y_size + spacing))

                devices = CellArray(device, nx, ny,
                                    (x_size + spacing, y_size + spacing))
                devices.translate((-(nx - 1) * (x_size + spacing) / 2.,
                                   -(ny - 1) * (y_size + spacing) / 2.))
                device_array = Cell("DeviceArray")
                device_array.add(devices)
                # Make the labels for each array of devices
                text = Label(
                    'w/s/l\n%i/%.1f/%i' % (width * 1000, spacing, len_outer),
                    5)
                lbl_vertical_offset = 1.40
                if j % 2 == 0:
                    text.translate(
                        tuple(
                            np.array(-text.bounding_box.mean(0)) +
                            np.array((0, -array_height / lbl_vertical_offset)))
                    )  # Center justify label
                else:
                    text.translate(
                        tuple(
                            np.array(-text.bounding_box.mean(0)) +
                            np.array((0, array_height / lbl_vertical_offset)))
                    )  # Center justify label
                # TODO: Finish this below
                device_array.add(text)
                manydevices.add(
                    device_array,
                    origin=((array_width + array_spacing) * i,
                            (array_height + 2. * array_spacing) * j -
                            array_spacing / 2.))

            self.add(manydevices,
                     origin=(-i * (array_width + array_spacing) / 2,
                             -(j + 1.5) * (array_height + array_spacing) / 2))
Ejemplo n.º 3
0
    def make_slit_array(self, _pitches, spacing, _widths, _lengths, rot_angle,
                        array_height, array_width, array_spacing, layers):
        if not (type(layers) == list):
            layers = [layers]
        if not (type(_pitches) == list):
            _pitches = [_pitches]
        if not (type(_lengths) == list):
            _lengths = [_lengths]
        if not (type(_widths) == list):
            _widths = [_widths]
        manyslits = i = j = None
        for l in layers:
            i = -1
            j = -1
            manyslits = Cell("SlitArray")
            pitch = _pitches[0]
            for length in _lengths:
                j += 1
                i = -1

                for width in _widths:
                    # for pitch in pitches:
                    i += 1
                    if i % 3 == 0:
                        j += 1  # Move to array to next line
                        i = 0  # Restart at left

                    pitch_v = pitch / np.cos(np.deg2rad(rot_angle))
                    #                    widthV = width / np.cos(np.deg2rad(rotAngle))
                    nx = int(array_width / (length + spacing))
                    ny = int(array_height / pitch_v)
                    # Define the slits
                    slit = Cell("Slits")
                    rect = Rectangle((-length / 2., -width / 2.), (length / 2., width / 2.), layer=l)
                    rect = rect.copy().rotate(rot_angle)
                    slit.add(rect)
                    slits = CellArray(slit, nx, ny, (length + spacing, pitch_v))
                    slits.translate((-(nx - 1) * (length + spacing) / 2., -(ny - 1) * pitch_v / 2.))
                    slit_array = Cell("SlitArray")
                    slit_array.add(slits)
                    text = Label('w/p/l\n%i/%i/%i' % (width * 1000, pitch, length), 5, layer=l)
                    lbl_vertical_offset = 1.35
                    if j % 2 == 0:
                        text.translate(
                            tuple(np.array(-text.bounding_box.mean(0)) + np.array((
                                0, -array_height / lbl_vertical_offset))))  # Center justify label
                    else:
                        text.translate(
                            tuple(np.array(-text.bounding_box.mean(0)) + np.array((
                                0, array_height / lbl_vertical_offset))))  # Center justify label
                    slit_array.add(text)
                    manyslits.add(slit_array,
                                  origin=((array_width + array_spacing) * i, (
                                          array_height + 2. * array_spacing) * j - array_spacing / 2.))

        self.add(manyslits,
                 origin=(-i * (array_width + array_spacing) / 2, -(j + 1.5) * (
                         array_height + array_spacing) / 2))
def slit_elongation_array(pitches, spacing, widths, lengths, rot_angle,
                          array_height, array_spacing, layers):
    if not (type(layers) == list):
        layers = [layers]
    if not (type(pitches) == list):
        pitches = [pitches]
    if not (type(lengths) == list):
        lengths = [lengths]
    if not (type(widths) == list):
        widths = [widths]
    for l in layers:
        j = -1
        manyslits = Cell("SlitArray")
        slitarray = Cell("SlitArray")
        pitch = pitches[0]
        width = widths[0]
        j += 1
        i = -1
        x_length = 0
        slit = Cell("Slits")
        for length in lengths:
            spacing = length / 5. + 0.1
            i += 1
            pitch_v = pitch / np.cos(np.deg2rad(rot_angle))
            n_y = int(array_height / pitch_v)
            # Define the slits
            if x_length == 0:
                translation = (length / 2., 0)
                x_length += length
            else:
                translation = (x_length + spacing + length / 2., 0)
                x_length += length + spacing
            pt1 = np.array((-length / 2., -width / 2.)) + translation
            pt2 = np.array((length / 2., width / 2.)) + translation
            rect = Rectangle(pt1, pt2, layer=l)
            rect = rect.copy().rotate(rot_angle)
            slit.add(rect)
        slits = CellArray(slit, 1, n_y, (0, pitch_v))
        slits.translate(
            (-slits.bounding_box[1, 0] / 2., -slits.bounding_box[1, 1] / 2.))

        slitarray.add(slits)
        text = Label('w/p\n%i/%i' % (width * 1000, pitch * 1000),
                     2,
                     layer=l_smBeam)
        lbl_vert_offset = 1.4
        text.translate(
            tuple(
                np.array(-text.bounding_box.mean(0)) +
                np.array((0, array_height /
                          lbl_vert_offset))))  # Center justify label
        slitarray.add(text)
        manyslits.add(slitarray)
    return manyslits
 def processCheck_Slits(self, position, arrayWidth, slitWidth, pitch,
                        length, rotation, layers):
     if not (type(layers) == list): layers = [layers]
     Nx = int(arrayWidth / pitch)
     Ny = 1
     for l in layers:
         # Define the slits
         slit = Cell("Slits")
         rect = Rectangle((-slitWidth / 2., -length / 2.),
                          (slitWidth / 2., length / 2.),
                          layer=l)
         slit.add(rect)
         slits = CellArray(slit, Nx, Ny, (pitch, 0))
         slits.translate((-(Nx) * (pitch) / 2., 0.))
         slits.translate(position)
         slitarray = Cell("ProcessCheckingSlits")
         slitarray.add(slits)
     self.add(slitarray)
Ejemplo n.º 6
0
    def make_slits(self, length, width, nslit, pitch, rot_angle, layers):
        """
        Define a single slit or a slit array with a given length, width and pitch
        """
        slitField = Cell("slitField")

        slit = Cell("Single Slit")
        slit_path = Path([(-length / 2., 0), (length / 2., 0)], width = width, layer = layers)
        slit.add(slit_path)
        
        if nslit == 1:
            slitField.add(slit, origin=(0,0), rotation=rot_angle)
        elif nslit > 1:
            slits = CellArray(slit, 1, nslit, (0,pitch))
            slits.translate((0, -(nslit-1) * pitch / 2.))
            slit_array = Cell("Multiple Slit")
            slit_array.add(slits)
            slitField.add(slit_array, origin=(0,0), rotation=rot_angle)
        else:
            print("Error in the number of slits. Check the internal code"*50)
            quit()
        self.add(slitField)
Ejemplo n.º 7
0
    def make_slit_array(self, _pitches, spacing, _widths, _lengths, rot_angle,
                        array_height, array_width, array_spacing, layers):
        if not (type(layers) == list):
            layers = [layers]
        if not (type(_pitches) == list):
            _pitches = [_pitches]
        if not (type(_lengths) == list):
            _lengths = [_lengths]
        if not (type(_widths) == list):
            _widths = [_widths]
        manyslits = i = j = None
        for l in layers:
            i = -1
            j = -1
            manyslits = Cell("SlitArray")
            pitch = _pitches[0]
            for length in _lengths:
                j += 1
                i = -1

                for width in _widths:
                    # for pitch in pitches:
                    i += 1
                    if i % 3 == 0:
                        j += 1  # Move to array to next line
                        i = 0  # Restart at left

                    nx = int(array_width / (length + spacing))
                    ny = int(array_height / pitch)
                    # Define the slits
                    slit = Cell("Slits")
                    rect = Rectangle((-length / 2., -width / 2.),
                                     (length / 2., width / 2.),
                                     layer=l)
                    slit.add(rect)
                    slits = CellArray(slit, nx, ny, (length + spacing, pitch))
                    slits.translate((-(nx - 1) * (length + spacing) / 2.,
                                     -(ny - 1) * pitch / 2.))
                    slit_array = Cell("SlitArray")
                    slit_array.add(slits)
                    text = Label('w/p/l\n%i/%i/%i' %
                                 (width * 1000, pitch, length),
                                 5,
                                 layer=l)
                    lbl_vertical_offset = 1.35
                    if j % 2 == 0:
                        text.translate(
                            tuple(
                                np.array(-text.bounding_box.mean(0)) +
                                np.array((0,
                                          -array_height / lbl_vertical_offset))
                            ))  # Center justify label
                    else:
                        text.translate(
                            tuple(
                                np.array(-text.bounding_box.mean(0)) +
                                np.array((0, array_height / lbl_vertical_offset
                                          ))))  # Center justify label
                    slit_array.add(text)
                    manyslits.add(
                        slit_array,
                        origin=((array_width + array_spacing) * i,
                                (array_height + 2. * array_spacing) * j -
                                array_spacing / 2.))

        # This is an ugly hack to center rotated slits, should fix this properly...
        hacky_offset_x = 200 if rot_angle == 45 else 0  # TODO: fix this ugly thing
        hacky_offset_y = -25 if rot_angle == 45 else 0

        self.add(manyslits,
                 origin=(-i * (array_width + array_spacing) / 2 +
                         hacky_offset_x, -(j + 1.5) *
                         (array_height + array_spacing) / 2 + hacky_offset_y),
                 rotation=rot_angle)
def make_slit_array(x_vars, y_vars, stat_vars, var_names, spacing, rot_angle,
                    array_height, array_width, array_spacing, layers):
    if len(var_names) != 3:
        raise Exception('Error! Need to have three variable names.')
    if not (type(layers) == list):
        layers = [layers]
    if not (type(x_vars) == list):
        x_vars = [x_vars]
    if not (type(y_vars) == list):
        y_vars = [y_vars]
    if not (type(stat_vars) == list):
        stat_vars = [stat_vars]

    x_var_name = var_names[0]
    y_var_name = var_names[1]
    stat_var_name = var_names[2]

    for l in layers:
        j = -1
        manyslits = Cell("SlitArray")
        for x_var in x_vars:
            j += 1
            i = -1
            for y_var in y_vars:
                i += 1
                if i % 3 == 0:
                    j += 1  # Move to array to next line
                    i = 0  # Restart at left

                var_dict = {
                    x_var_name: x_var,
                    y_var_name: y_var,
                    stat_var_name: stat_vars[0]
                }
                pitch = var_dict['pitch']
                width = var_dict['width']
                length = var_dict['length']

                pitch_v = pitch / np.cos(np.deg2rad(rot_angle))
                #                    widthV = width / np.cos(np.deg2rad(rotAngle))
                n_x = int(array_width / (length + spacing))
                n_y = int(array_height / pitch_v)
                # Define the slits
                slit = Cell("Slits")
                rect = Rectangle((-length / 2., -width / 2.),
                                 (length / 2., width / 2.),
                                 layer=l)
                rect = rect.copy().rotate(rot_angle)
                slit.add(rect)
                slits = CellArray(slit, n_x, n_y, (length + spacing, pitch_v))
                slits.translate((-(n_x - 1) * (length + spacing) / 2.,
                                 -(n_y - 1) * pitch_v / 2.))
                slit_array = Cell("SlitArray")
                slit_array.add(slits)
                text = Label('w/p/l\n%i/%i/%i' %
                             (width * 1000, pitch * 1000, length * 1000),
                             2,
                             layer=l_smBeam)
                lbl_vert_offset = 1.35
                if j % 2 == 0:
                    text.translate(
                        tuple(
                            np.array(-text.bounding_box.mean(0)) +
                            np.array((0, -array_height / lbl_vert_offset)))
                    )  # Center justify label
                else:
                    text.translate(
                        tuple(
                            np.array(-text.bounding_box.mean(0)) +
                            np.array((0, array_height / lbl_vert_offset)))
                    )  # Center justify label
                slit_array.add(text)
                manyslits.add(slit_array,
                              origin=((array_width + array_spacing) * i,
                                      (array_height + 2. * array_spacing) * j -
                                      array_spacing / 2.))
    return manyslits
def makeSlitArray3(pitches, spacing, widths, lengths, rotAngle, arrayHeight,
                   arrayWidth, arraySpacing, layers):
    '''
    Give it a single pitch and arrays for spacings/widths and it will generate an array for all the combinations
    Makes seperate frame for each pitch
    '''
    if not (type(layers) == list): layers = [layers]
    if not (type(pitches) == list): pitches = [pitches]
    if not (type(lengths) == list): lengths = [lengths]
    if not (type(widths) == list): widths = [widths]
    for l in layers:
        i = -1
        j = -1
        manyslits = Cell("SlitArray")
        length = lengths[0]
        spacing = length / 5. + 0.1  # Set the spacing between arrays
        for pitch in pitches:
            j += 1
            i = -1

            for width in widths:
                #            for pitch in pitches:
                i += 1
                if i % 3 == 0:
                    j += 1  # Move to array to next line
                    i = 0  # Restart at left
                pitchV = pitch / np.cos(np.deg2rad(rotAngle))
                #                    widthV = width / np.cos(np.deg2rad(rotAngle))
                Nx = int(arrayWidth / (length + spacing))
                Ny = int(arrayHeight / (pitchV))
                # Define the slits
                slit = Cell("Slits")
                rect = Rectangle((-length / 2., -width / 2.),
                                 (length / 2., width / 2.),
                                 layer=l)
                rect = rect.copy().rotate(rotAngle)
                slit.add(rect)
                slits = CellArray(slit, Nx, Ny, (length + spacing, pitchV))
                slits.translate((-(Nx - 1) * (length + spacing) / 2.,
                                 -(Ny - 1) * (pitchV) / 2.))
                slitarray = Cell("SlitArray")
                slitarray.add(slits)
                text = Label('w/p/l\n%i/%i/%i' %
                             (width * 1000, pitch * 1000, length * 1000),
                             2,
                             layer=l_smBeam)
                lblVertOffset = 1.35
                if j % 2 == 0:
                    text.translate(
                        tuple(
                            np.array(-text.bounding_box.mean(0)) +
                            np.array((0, -arrayHeight /
                                      lblVertOffset))))  # Center justify label
                else:
                    text.translate(
                        tuple(
                            np.array(-text.bounding_box.mean(0)) +
                            np.array((0, arrayHeight /
                                      lblVertOffset))))  # Center justify label
                slitarray.add(text)
                manyslits.add(slitarray,
                              origin=((arrayWidth + arraySpacing) * i,
                                      (arrayHeight + 2. * arraySpacing) * j -
                                      arraySpacing / 2.))
    return manyslits
def makeSlitArray(pitches, spacing, widths, lengths, rotAngle, arrayHeight,
                  arraySpacing, layers):
    '''
    Give it a single pitch and width and it will generate an array for all the lengths
    '''
    if not (type(layers) == list): layers = [layers]
    if not (type(pitches) == list): pitches = [pitches]
    if not (type(lengths) == list): lengths = [lengths]
    if not (type(widths) == list): widths = [widths]
    for l in layers:
        i = -1
        j = -1
        manyslits = Cell("SlitArray")
        slitarray = Cell("SlitArray")
        pitch = pitches[0]
        width = widths[0]
        j += 1
        i = -1
        xlength = 0
        slit = Cell("Slits")
        for length in lengths:
            spacing = length / 5. + 0.1
            i += 1
            pitchV = pitch / np.cos(np.deg2rad(rotAngle))
            #            widthV = width / np.cos(np.deg2rad(rotAngle))
            #            Nx = int(arrayWidth / (length + spacing))
            Ny = int(arrayHeight / (pitchV))
            # Define the slits
            if xlength == 0:
                translation = (length / 2., 0)
                xlength += length
            else:
                translation = (xlength + spacing + length / 2., 0)
                xlength += length + spacing

            pt1 = np.array((-length / 2., -width / 2.)) + translation
            pt2 = np.array((length / 2., width / 2.)) + translation
            rect = Rectangle(pt1, pt2, layer=l)
            rect = rect.copy().rotate(rotAngle)
            slit.add(rect)
        slits = CellArray(slit, 1, Ny, (0, pitchV))
        # slits.translate((-(Nx - 1) * (length + spacing) / 2., -(Ny - 1)* (pitchV) / 2.))
        slits.translate(
            (-slits.bounding_box[1, 0] / 2., -slits.bounding_box[1, 1] / 2.))

        slitarray.add(slits)
        text = Label('w/p\n%i/%i' % (width * 1000, pitch * 1000),
                     2,
                     layer=l_smBeam)
        lblVertOffset = 1.4
        text.translate(
            tuple(
                np.array(-text.bounding_box.mean(0)) +
                np.array((0, arrayHeight /
                          lblVertOffset))))  # Center justify label
        slitarray.add(text)
        #            manyslits.add(slitarray,origin=((arrayWidth + arraySpacing) * i, (arrayHeight + 2.*arraySpacing) * j-arraySpacing/2.))
        manyslits.add(slitarray)

    # self.add(manyslits, origin=(-i * (arrayWidth + arraySpacing) / 2, -j * (arrayHeight + arraySpacing) / 2))
    #    self.add(manyslits)
    return manyslits
Ejemplo n.º 11
0
    def make_branch_array(self, _widths, _lengths, nx, ny, spacing_structs,
                          spacing_arrays, rot_angle, layers):
        if not (type(layers) == list):
            layers = [layers]
        if not (type(_lengths) == list):
            _lengths = [_lengths]
        if not (type(_widths) == list):
            _widths = [_widths]
        l = layers[0]
        _length = _lengths[0]

        manyslits = i = j = None

        slits = []
        for width in _widths:
            slit = Cell("Slit_{:.0f}".format(width * 1000))
            line = Path([[-_length / 2., 0], [_length / 2., 0]],
                        width=width,
                        layer=l)
            slit.add(line)
            slits.append(slit)

        buffers = self.make_branch_device(0.08,
                                          1.0,
                                          _lengths[0] / 2.,
                                          _lengths[0] / 2.,
                                          4,
                                          layers[0],
                                          buffers_only=True)

        many_crosses = Cell("CrossArray")
        x_pos = 0
        y_pos = 0

        array_pitch = (ny - 1) * (
            length + spacing_structs) - spacing_structs + spacing_arrays

        for j, width_vert in enumerate(_widths[::-1]):
            for i, width_horiz in enumerate(_widths):
                # Define a single cross
                cross = Cell("Cross_{:.0f}_{:.0f}".format(
                    width_horiz * 1000, width_vert * 1000))
                cross.add(slits[i])  # Horizontal slit
                cross.add(slits[j], rotation=90)  # Vertical slit
                cross.add(buffers)
                # Define the cross array
                cross_array = Cell("CrossArray_{:.0f}_{:.0f}".format(
                    width_horiz * 1000, width_vert * 1000))
                slit_array = CellArray(
                    cross, nx, ny,
                    (_length + spacing_structs, _length + spacing_structs))
                slit_array.translate(
                    (-(nx - 1) * (_length + spacing_structs) / 2.,
                     (-(ny - 1) * (_length + spacing_structs) / 2.)))
                cross_array.add(slit_array)
                many_crosses.add(cross_array, origin=(x_pos, y_pos))
                x_pos += array_pitch
            y_pos += array_pitch
            x_pos = 0

        # Make the labels
        lbl_cell = Cell("Lbl_Cell")
        for i, width in enumerate(_widths):
            text_string = 'W{:.0f}'.format(width * 1000)
            text = Label(text_string, 5, layer=l)
            text.translate(tuple(np.array(-text.bounding_box.mean(0))))
            x_offset = -1.5 * array_pitch + i * array_pitch
            text.translate(np.array((x_offset, 0)))  # Center justify label
            lbl_cell.add(text)

        centered_cell = Cell('Centered_Cell')
        bbox = np.mean(many_crosses.bounding_box, 0)  # Get center of cell

        centered_cell.add(many_crosses, origin=tuple(-bbox))
        lbl_vertical_offset = 1.5
        centered_cell.add(lbl_cell, origin=(0, -bbox[1] * lbl_vertical_offset))
        centered_cell.add(lbl_cell,
                          origin=(-bbox[1] * lbl_vertical_offset, 0),
                          rotation=90)

        self.add(centered_cell, rotation=rot_angle)
Ejemplo n.º 12
0
    def make_slit_patterns(self, sflabels, _pitches, spacing, _widths,
                           _lengths, rot_angle, array_height, array_width,
                           array_spacing, layers):
        if not (type(layers) == list):
            layers = [layers]
        if not (type(_pitches) == list):
            _pitches = [_pitches]
        if not (type(_lengths) == list):
            _lengths = [_lengths]
        if not (type(_widths) == list):
            _widths = [_widths]
        manyslits = i = j = None
        for l in layers:
            i = -1
            j = -1
            manyslits = Cell("SlitArray")
            pitch = _pitches[0]
            for length in _lengths:
                j += 1
                i = -1

                for width in _widths:
                    # for pitch in pitches:
                    i += 1
                    if i % 3 == 0:
                        j += 1  # Move to array to next line
                        i = 0  # Restart at left

                    nx = int(array_width / (length + spacing))
                    ny = int(array_height / pitch)
                    # Define the slits
                    slit = Cell("Slit_w{:.0f}".format(width * 1000))
                    slit_path = Path([(-length / 2., 0), (length / 2., 0)],
                                     width=width,
                                     layer=l)
                    slit.add(slit_path)
                    slits = CellArray(slit, nx, ny, (length + spacing, pitch))
                    slits.translate((-(nx - 1) * (length + spacing) / 2.,
                                     -(ny - 1) * pitch / 2.))
                    slit_array = Cell("SlitArray_w{:.0f}".format(width * 1000))
                    slit_array.add(slits)
                    text = Label('w/p/l\n%i/%i/%i' %
                                 (width * 1000, pitch, length),
                                 5,
                                 layer=l)
                    lbl_vertical_offset = 1.35
                    if j % 2 == 0:
                        text.translate(
                            tuple(
                                np.array(-text.bounding_box.mean(0)) +
                                np.array((0,
                                          -array_height / lbl_vertical_offset))
                            ))  # Center justify label
                    else:
                        text.translate(
                            tuple(
                                np.array(-text.bounding_box.mean(0)) +
                                np.array((0, array_height / lbl_vertical_offset
                                          ))))  # Center justify label
                    slit_array.add(text)
                    manyslits.add(
                        slit_array,
                        origin=((array_width + array_spacing) * i,
                                (array_height + 2. * array_spacing) * j -
                                array_spacing / 2.))

        specific_label = Label(sflabels, 20, layer=l)
        specific_label.translate(
            (-lbl_vertical_offset * smMarkerPosition,
             -lbl_vertical_offset * smMarkerPosition))  # Center Small Field
        slit_array.add(specific_label)

        # This is an ugly hack to center rotated slits, should fix this properly...
        if rot_angle == 45:  # TODO: fix this ugly thing
            hacky_offset_x = 200
            hacky_offset_y = -25
        elif rot_angle == 90:
            hacky_offset_x = 356
            hacky_offset_y = 96.5
        elif rot_angle == 180:
            hacky_offset_x = 260
            hacky_offset_y = 452
        elif rot_angle == 270 or rot_angle == -90:
            hacky_offset_x = -96.5
            hacky_offset_y = 356
        else:
            hacky_offset_x = 0
            hacky_offset_y = 0

        self.add(manyslits,
                 origin=(-(i * (array_width + array_spacing)) / 2 +
                         hacky_offset_x, -(j + 1.5) *
                         (array_height + array_spacing) / 2 + hacky_offset_y),
                 rotation=rot_angle)
Ejemplo n.º 13
0
def makeSlitArray2(pitches, spacing, widths, lengths, rotAngle, arrayHeight,
                   arrayWidth, arraySpacing, layers):
    '''
    Give it a single pitch and lengths/widths and it will generate an array for all the combinations
    Makes seperate frame for each length value
    '''
    if not (type(layers) == list): layers = [layers]
    if not (type(pitches) == list): pitches = [pitches]
    if not (type(lengths) == list): lengths = [lengths]
    if not (type(widths) == list): widths = [widths]
    for l in layers:
        i = -1
        j = -1
        manyslits = Cell("SlitArray")
        pitch = pitches[0]
        for length in lengths:
            j += 1
            i = -1

            for width in widths:
                #            for pitch in pitches:
                i += 1
                if i % 3 == 0:
                    j += 1  # Move to array to next line
                    i = 0  # Restart at left

                pitchV = pitch / np.cos(np.deg2rad(rotAngle))
                #                    widthV = width / np.cos(np.deg2rad(rotAngle))
                Nx = int(arrayWidth / (length + spacing))
                Ny = int(arrayHeight / (pitchV))
                # Define the slits
                membrane = Path([(-length / 2., 0), (length / 2., 0)],
                                width=width,
                                layer=l)
                membrane_cell = Cell('Membrane_w{:.0f}_l{:.0f}'.format(
                    width * 1000, length * 1000))
                membrane_cell.add(membrane)
                slit = Cell("Slits")
                slit.add(membrane_cell, rotation=rotAngle)
                if Nx <= 1:
                    slits = CellArray(slit, Nx, Ny, (length, pitchV))
                    slits.translate((0, -(Ny - 1) * (pitchV) / 2.))
                else:
                    slits = CellArray(slit, Nx, Ny, (length + spacing, pitchV))
                    slits.translate((-(Nx - 1) * (length + spacing) / 2.,
                                     -(Ny - 1) * (pitchV) / 2.))

                slitarray = Cell("SlitArray")
                slitarray.add(slits)
                text = Label('w/p/l\n%i/%i/%i' %
                             (width * 1000, pitch * 1000, length),
                             2,
                             layer=l_smBeam)
                lblVertOffset = 1.35
                if j % 2 == 0:
                    text.translate(
                        tuple(
                            np.array(-text.bounding_box.mean(0)) +
                            np.array((0, -arrayHeight /
                                      lblVertOffset))))  # Center justify label
                else:
                    text.translate(
                        tuple(
                            np.array(-text.bounding_box.mean(0)) +
                            np.array((0, arrayHeight /
                                      lblVertOffset))))  # Center justify label
                slitarray.add(text)
                manyslits.add(slitarray,
                              origin=((arrayWidth + arraySpacing) * i,
                                      (arrayHeight + 2. * arraySpacing) * j -
                                      arraySpacing / 2.))
    return manyslits
Ejemplo n.º 14
0
    def make_slits_reservoir(
            self, length, width, nslit, pitch, contact_distance,
            layers):  # 5 additional slits as material reservoir
        res_slit = 5
        slit_margin = 0.5

        res_width = width
        res_pitch = pitch

        resField = Cell("resField")

        # Outer reservoir
        outer_res = Cell("Outer Reservoir")
        out_res_length = (margin - fing_width - slit_margin)
        outer_res_path = Path([(-out_res_length / 2, 0),
                               (out_res_length / 2, 0)],
                              width=res_width,
                              layer=layers)
        outer_res.add(outer_res_path)

        out_gap = length - margin + slit_margin
        out_x_spac = (out_res_length + out_gap) / np.cos(rad_angle)
        out_y_spac = res_pitch

        out_reservoirs = CellArray(outer_res,
                                   2,
                                   res_slit,
                                   spacing=(out_x_spac, out_y_spac))
        out_x_transl = -(out_res_length + out_gap) / (
            2 * np.cos(rad_angle)) + (slit_margin) * np.sin(rad_angle)
        out_reservoirs.translate((out_x_transl, 0))
        out_res_array = Cell("Multiple Slit")
        out_res_array.add(out_reservoirs)
        resField.add(out_res_array, origin=(0, 0), rotation=rot_angle)

        # Main reservoir
        reservoir = Cell("Single Reservoir")
        res_length = fake_slit_length
        res_path = Path([(-res_length / 2., 0), (res_length / 2., 0)],
                        width=res_width,
                        layer=layers)
        reservoir.add(res_path)

        gap = contact_distance + 2 * (slit_margin + fing_width)
        x_spac = (res_length + gap) / np.cos(rad_angle)
        y_spac = res_pitch

        reservoirs = CellArray(reservoir,
                               2,
                               res_slit,
                               spacing=(x_spac, y_spac))
        x_transl = -(res_length + gap) / (2 * np.cos(rad_angle)) + (
            slit_margin) * np.sin(rad_angle)
        reservoirs.translate((x_transl, 0))
        res_array = Cell("Multiple Slit")
        res_array.add(reservoirs)
        resField.add(res_array, origin=(0, 0), rotation=rot_angle)

        # Inner reservoir
        if contact_distance > slit_margin:
            add_slit = Cell("Additional Reservoir")
            add_res_path = Path([(-(contact_distance - 0.5) / 2., 0),
                                 ((contact_distance - 0.5) / 2., 0)],
                                width=res_width,
                                layer=layers)
            add_slit.add(add_res_path)

            add_reservoir = CellArray(add_slit,
                                      1,
                                      res_slit,
                                      spacing=(0, res_pitch))
            add_reservoir.translate((0, 0))
            add_res_array = Cell("Additional Multiple Slit")
            add_res_array.add(add_reservoir)
            resField.add(add_res_array, origin=(0, 0), rotation=rot_angle)

        self.add(resField,
                 origin=(0, (nslit + 1) * pitch / 2) / np.cos(rad_angle))
        self.add(resField,
                 origin=(0, -((nslit + 1 + (2 * (res_slit - 1))) * pitch / 2) /
                         np.cos(rad_angle)))
Ejemplo n.º 15
0
    def makeSlitArray(self, pitches, spacing, widths, lengths, rotAngle,
                      arrayHeight, arrayWidth, arraySpacing, layers):
        if not (type(layers) == list):
            layers = [layers]
        if not (type(pitches) == list):
            pitches = [pitches]
        if not (type(lengths) == list):
            lengths = [lengths]
        if not (type(widths) == list):
            widths = [widths]
        for l in layers:
            i = -1
            j = -1
            manyslits = Cell("SlitArray")
            pitch = pitches[0]
            for length in lengths:
                j += 1
                i = -1

                for width in widths:
                    #            for pitch in pitches:
                    i += 1
                    if i % 3 == 0:
                        j += 1  # Move to array to next line
                        i = 0  # Restart at left

                    pitchV = pitch / np.cos(np.deg2rad(rotAngle))
                    #                    widthV = width / np.cos(np.deg2rad(rotAngle))
                    Nx = int(arrayWidth / (length + spacing))
                    Ny = int(arrayHeight / (pitchV))
                    # Define the slits
                    slit = Cell("Slits")
                    rect = Rectangle((-length / 2., -width / 2.),
                                     (length / 2., width / 2.),
                                     layer=l)
                    rect = rect.copy().rotate(rotAngle)
                    slit.add(rect)
                    slits = CellArray(slit, Nx, Ny, (length + spacing, pitchV))
                    slits.translate((-(Nx - 1) * (length + spacing) / 2.,
                                     -(Ny - 1) * (pitchV) / 2.))
                    slitarray = Cell("SlitArray")
                    slitarray.add(slits)
                    text = Label(
                        'w/p/l\n%i/%i/%i' % (width * 1000, pitch, length), 5)
                    lblVertOffset = 1.35
                    if j % 2 == 0:
                        text.translate(
                            tuple(
                                np.array(-text.bounding_box.mean(0)) +
                                np.array((0, -arrayHeight / lblVertOffset)))
                        )  # Center justify label
                    else:
                        text.translate(
                            tuple(
                                np.array(-text.bounding_box.mean(0)) +
                                np.array((0, arrayHeight / lblVertOffset)))
                        )  # Center justify label
                    slitarray.add(text)
                    manyslits.add(
                        slitarray,
                        origin=((arrayWidth + arraySpacing) * i,
                                (arrayHeight + 2. * arraySpacing) * j -
                                arraySpacing / 2.))

        self.add(manyslits,
                 origin=(-i * (arrayWidth + arraySpacing) / 2,
                         -(j + 1.5) * (arrayHeight + arraySpacing) / 2))
    def make_tapered_cross_array(self, _nom_width, _taper_widths, _length,
                                 _taper_length, nx, ny, spacing_structs,
                                 spacing_arrays, rot_angle, layers):

        if not (type(layers) == list):
            layers = [layers]
        if not (type(_taper_widths) == list):
            _taper_widths = [_taper_widths]

        if type(_nom_width
                ) == list:  # Only accept a single membrane width for now
            _nom_width = _nom_width[0]
        if type(_length
                ) == list:  # Only accept a single membrane length for now
            _length = _length[0]
        if type(_taper_length
                ) == list:  # Only accept a single taper length for now
            _taper_length = _taper_length[0]

        layer = layers[0]

        many_crosses = Cell("CrossArray")
        x_pos = 0
        y_pos = 0

        array_pitch = ny * (length +
                            spacing_structs) - spacing_structs + spacing_arrays

        membrane_cell = Cell('Testing')

        # fix the taper length, put this in a loop and iterate over various combined taper width values

        for j, tw_vert in enumerate(_taper_widths):
            for i, tw_horiz in enumerate(_taper_widths):
                # Define a single cross
                cross = self.make_tapered_cross(_nom_width, _nom_width,
                                                tw_horiz, tw_vert, _length,
                                                _length, _taper_length,
                                                _taper_length, layer)
                # Define the cross array
                cross_array = Cell("TaperedCrossArray_{:.0f}_{:.0f}".format(
                    tw_horiz * 1000, tw_vert * 1000))
                slit_array = CellArray(
                    cross, nx, ny,
                    (_length + spacing_structs, _length + spacing_structs))
                slit_array.translate(
                    (-(nx - 1) * (_length + spacing_structs) / 2.,
                     (-(ny - 1) * (_length + spacing_structs) / 2.)))
                cross_array.add(slit_array)
                many_crosses.add(cross_array, origin=(x_pos, y_pos))
                x_pos += array_pitch
            y_pos += array_pitch
            x_pos = 0

        # Make the labels
        lbl_cell = Cell("Lbl_Cell")
        for i, width in enumerate(_taper_widths):
            text_string = 'TW{:.0f}'.format(width * 1000)
            text = Label(text_string, 5, layer=layer)
            text.translate(tuple(np.array(-text.bounding_box.mean(0))))
            x_offset = -1.5 * array_pitch + i * array_pitch
            text.translate(np.array((x_offset, 0)))  # Center justify label
            lbl_cell.add(text)

        # Make label for the whole field
        frame_lbl = Cell("Cell_Label")
        text_string = 'NomW {:.0f}, TL {:.0f}'.format(_nom_width * 1000,
                                                      _taper_length * 1000)
        text = Label(text_string, 5, layer=layer)
        text.translate(tuple(np.array(-text.bounding_box.mean(0))))
        frame_lbl.add(text)

        centered_cell = Cell('Centered_Cell')
        bbox = np.mean(many_crosses.bounding_box, 0)  # Get center of cell

        centered_cell.add(many_crosses, origin=tuple(-bbox))
        centered_cell.add(frame_lbl, origin=(0, -200))
        lbl_vertical_offset = 1.5
        centered_cell.add(lbl_cell, origin=(0, -bbox[1] * lbl_vertical_offset))
        centered_cell.add(lbl_cell,
                          origin=(-bbox[1] * lbl_vertical_offset, 0),
                          rotation=90)

        self.add(centered_cell, rotation=rot_angle)