Ejemplo n.º 1
0
    def add_features(self):
        # feature summary
        df_features = self.report.feature_summary("feature_summary.png")
        filename = 'OUTPUT' + os.sep + 'features_summary.csv'
        df_features.to_csv(self.directory + os.sep + filename, sep=',')

        not_tested = ""
        self.jinja['drug_not_tested'] = not_tested

        df_drugs = self.report.drug_summary(filename="drug_summary.png")
        get_name = self.report.drug_decode.get_name
        if len(self.report.drug_decode.df) > 0:
            df_drugs.index = [
                "{}-{}".format(x, get_name(x)) for x in df_drugs.index
            ]
        filename = 'OUTPUT' + os.sep + 'drugs_summary.csv'
        df_drugs.to_csv(self.directory + os.sep + filename, sep=',')

        if len(self.report.df) == 0:
            return

        # --------------------------- Create table with links to all drugs
        groups = self.report.df.groupby('DRUG_ID')
        try:
            df = groups.mean()['ANOVA_FEATURE_FDR'].sort_values()
        except:
            # note double brackets for pythonn3.3
            df = groups.mean()[['ANOVA_FEATURE_FDR']].sort()

        df = df.reset_index()  # get back the Drug id in the dframe columns
        # let us add also the drug name
        df = self.report.drug_decode.drug_annotations(df)

        # let us also add number of associations computed
        counts = [len(groups.groups[k]) for k in df.DRUG_ID]
        df['Number of associations computed'] = counts
        groups = self.report.get_significant_set().groupby('DRUG_ID').groups
        count = []
        for drug in df['DRUG_ID'].values:
            if drug in groups.keys():
                count.append(len(groups[drug]))
            else:
                count.append(0)
        df['hits'] = count

        # add another set of drug_id but sorted in alpha numerical order
        table = HTMLTable(df, 'drugs')
        table.add_href('DRUG_ID', url="associations/drug_", suffix=".html")
        table.df.columns = [
            x.replace('ANOVA_FEATURE_FDR', 'mean FEATURE ANOVA FDR')
            for x in table.df.columns
        ]
        table.add_bgcolor('hits',
                          mode='max',
                          cmap=cmap_builder('white', 'orange', 'red'))

        self.jinja['drug_table'] = table.to_html(escape=False,
                                                 header=True,
                                                 index=False)

        # ---------------------- Create full table with links to all features
        df = pd.DataFrame({'FEATURE': self.report.df['FEATURE'].unique()})
        try:
            df.sort_values(by='FEATURE', inplace=True)
        except:
            df.sort('FEATURE', inplace=True)

        groups = self.report.get_significant_set().groupby('FEATURE').groups

        count = []
        for feature in df['FEATURE'].values:
            if feature in groups.keys():
                count.append(len(groups[feature]))
            else:
                count.append(0)
        df['hits'] = count

        table = HTMLTable(df, 'features')
        table.sort('hits', ascending=False)
        table.add_href('FEATURE', url="associations/", suffix=".html")
        table.add_bgcolor('hits',
                          mode='max',
                          cmap=cmap_builder('white', 'orange', 'red'))
        self.jinja['feature_table'] = table.to_html(escape=False,
                                                    header=True,
                                                    index=False)
Ejemplo n.º 2
0
    def _create_report(self, onweb=True):
        # A summary table
        diag = self.report.diagnostics()
        table = HTMLTable(diag, 'summary')
        txt = ''
        for index, row in diag.iterrows():
            if len(row.text) == 0 and len(row.value) == 0:
                txt += '----<br/>'
            else:
                txt += row.text + ": " +  str(row.value) + "<br/>"
        self.jinja['summary'] = txt

        print('Creating volcano plots')
        # this can be pretty slow. so keep only 1000 most relevant
        # values and 1000 random ones to get an idea of the distribution
        v = VolcanoANOVA(self.report.df, settings=self.settings)
        v.selector(v.df, 1500, 1500, inplace=True)
        v.volcano_plot_all()
        v.savefig_and_js("volcano_all_js")

        self.jinja['volcano'] = """
            <h3></h3>
            <a href="volcano_all_js.html">
                <img alt="volcano plot for all associations"
                    src="volcano_all_js.png">
            </a>
            <br/>
            <p> A javascript version is available
                <a href="volcano_all_js.html">here</a> (
                or click on the image).</p>
        """

        # MANOVA link
        N = len(self.report.get_significant_set())
        self.jinja['manova'] = """
        There were %(N)s significant associations found.
        All significant associations have been gatherered
        in the following link: <br/><a href="manova.html">manova results</a>.
        """ % {'N': N}

        # feature summary
        df_features = self.report.feature_summary("feature_summary.png")
        filename = 'OUTPUT' + os.sep + 'features_summary.csv'
        df_features.to_csv(self.directory + os.sep + filename, sep=',')

        # drug summary
        #not_tested = [x for x in self.report.gdsc.drugIds if x not in
        #        self.report.df.DRUG_ID.unique()]
        #if len(not_tested) > 0:
        #    not_tested = """%s drugs were not analysed due to
        #    lack of valid data points: """ % len(not_tested) + \
        #            ", ".join(not_tested)
        #else:
        #    not_tested = ""
        not_tested = ""
        self.jinja['drug_not_tested'] = not_tested

        df_drugs = self.report.drug_summary(filename="drug_summary.png")
        get_name = self.report.drug_decode.get_name
        if len(self.report.drug_decode.df) > 0:
            df_drugs.index = [x + "-" + get_name(x) for x in df_drugs.index]
        filename = 'OUTPUT' + os.sep + 'drugs_summary.csv'
        df_drugs.to_csv(self.directory + os.sep + filename, sep=',')

        # --------------------------- Create table with links to all drugs
        groups = self.report.df.groupby('DRUG_ID')
        try:
            df = groups.mean()['ANOVA_FEATURE_FDR'].sort_values()
        except:
            # note double brackets for pythonn3.3
            df = groups.mean()[['ANOVA_FEATURE_FDR']].sort()
        df = df.reset_index() # get back the Drug id in the dframe columns

        # let us add also the drug name
        df = self.report.drug_decode.drug_annotations(df)

        # let us also add number of associations computed
        counts = [len(groups.groups[k]) for k in df.DRUG_ID]
        df['Number of associations computed'] = counts
        groups = self.report.get_significant_set().groupby('DRUG_ID').groups
        count = []
        for drug in df['DRUG_ID'].values:
            if drug in groups.keys():
                count.append(len(groups[drug]))
            else:
                count.append(0)
        df['hits'] = count

        # add another set of drug_id but sorted in alpha numerical order
        table = HTMLTable(df, 'drugs')
        table.add_href('DRUG_ID')
        table.df.columns = [x.replace('ANOVA_FEATURE_FDR',
            'mean FEATURE ANOVA FDR') for x in table.df.columns]
        table.add_bgcolor('hits', mode='max',
                cmap=cmap_builder('white', 'orange', 'red'))

        self.jinja['drug_table'] = table.to_html(escape=False,
                header=True, index=False)

        # ---------------------- Create full table with links to all features
        df = pd.DataFrame({'FEATURE': self.report.df['FEATURE'].unique()})
        try:
            df.sort_values(by='FEATURE', inplace=True)
        except:
            df.sort('FEATURE', inplace=True)

        groups = self.report.get_significant_set().groupby('FEATURE').groups

        count = []
        for feature in df['FEATURE'].values:
            if feature in groups.keys():
                count.append(len(groups[feature]))
            else:
                count.append(0)
        df['hits'] = count

        table = HTMLTable(df, 'features')
        table.sort('hits', ascending=False)
        table.add_href('FEATURE')
        table.add_bgcolor('hits', mode='max',
                cmap=cmap_builder('white', 'orange', 'red'))
        self.jinja['feature_table'] = table.to_html(escape=False,
                header=True, index=False)

        # -------------------------------------- COSMIC table for completeness
        colnames = self.report.gdsc.features._special_names
        df = self.report.gdsc.features.df[colnames]

        # TODO
        # add other columns if possible e.g., GDSC1, GDSC2, TCGA

        df = df.reset_index()
        table = HTMLTable(df)
        url = "http://cancer.sanger.ac.uk/cell_lines/sample/overview?id="
        table.add_href('COSMIC_ID', url=url, newtab=True)
        self.jinja['cosmic_table'] = table.to_html()

        # -------------------------------------- settings and INPUT files
        input_dir = self.directory + os.sep + 'INPUT'
        filename = 'ANOVA_input.csv'
        filename = os.sep.join([input_dir, filename])
        self.report.gdsc.ic50.to_csv(filename)
        filename = os.sep.join(['INPUT', 'ANOVA_input.csv'])
        self.jinja['ic50_file'] = filename

        # the genomic features, which may be the default version
        # one provided by the user. It may have been changed
        gf_filename = os.sep.join([input_dir, 'genomic_features.csv'])
        self.report.gdsc.features.to_csv(gf_filename)
        html = """Saved <a href="INPUT/genomic_features.csv">Genomic
                  Features</a> file<br/> (possibly the default
                  version)."""
        self.jinja['gf_file'] = html

        # Always save DRUG_DECODE file even if empty
        # It may be be interpreted in other pipeline or for reproducibility
        output_filename = input_dir + os.sep + 'DRUG_DECODE.csv'
        self.report.drug_decode.to_csv(output_filename)
        html = 'Get <a href="INPUT/DRUG_DECODE.csv">Drug DECODE file</a>'
        if len(self.report.drug_decode) == 0:
            html += 'Note that DRUG_DECODE file was not provided (empty?).'
        self.jinja['drug_decode'] = html

        # Save settings as json file
        filename = os.sep.join([input_dir, 'settings.json'])
        self.settings.to_json(filename)
        filename = os.path.basename(filename)
        self.jinja['settings'] = \
                """Get the settings as a <a href="INPUT/%s">
                json file</a>.""" % filename

        # Save all Results dataframe
        filename = os.sep.join([self.settings.directory, 'OUTPUT',
            'results.csv'])
        ANOVAResults(self.report.df).to_csv(filename)

        code = """from gdsctools import *
import os

def getfile(filename, where='../INPUT'):
    return os.sep.join([where, filename])

# reback the IC50 and genomic features matrices
gdsc = ANOVA(getfile('%(ic50)s'), getfile('%(gf_filename)s'),
        getfile('DRUG_DECODE.csv'))
gdsc.settings.from_json(getfile('settings.json'))
gdsc.init()

# Analyse the data
results = gdsc.anova_all()

# Create the HTML report
r = ANOVAReport(gdsc, results)
r.create_html_pages(onweb=False)"""
        code = code % {
                'ic50': 'ANOVA_input.csv',
                'gf_filename': 'genomic_features.csv'}

        filename = os.sep.join([self.settings.directory, 'code','rerun.py'])
        fh = open(filename, 'w')
        fh.write(code)
        fh.close()
Ejemplo n.º 3
0
    def add_features(self):
        
        # feature summary
        df_features = self.report.feature_summary("feature_summary.png")
        filename = 'OUTPUT' + os.sep + 'features_summary.csv'
        df_features.to_csv(self.directory + os.sep + filename, sep=',')

        not_tested = ""
        self.jinja['drug_not_tested'] = not_tested

        df_drugs = self.report.drug_summary(filename="drug_summary.png")
        get_name = self.report.drug_decode.get_name
        if len(self.report.drug_decode.df) > 0:
            df_drugs.index = ["{}-{}".format(x, get_name(x)) for x in df_drugs.index]
        filename = 'OUTPUT' + os.sep + 'drugs_summary.csv'
        df_drugs.to_csv(self.directory + os.sep + filename, sep=',')

        if len(self.report.df) == 0:
            return

        # --------------------------- Create table with links to all drugs
        groups = self.report.df.groupby('DRUG_ID')
        try:
            df = groups.mean()['ANOVA_FEATURE_FDR'].sort_values()
        except:
            # note double brackets for pythonn3.3
            df = groups.mean()[['ANOVA_FEATURE_FDR']].sort()

        df = df.reset_index() # get back the Drug id in the dframe columns
        # let us add also the drug name
        df = self.report.drug_decode.drug_annotations(df)

        # let us also add number of associations computed
        counts = [len(groups.groups[k]) for k in df.DRUG_ID]
        df['Number of associations computed'] = counts
        groups = self.report.get_significant_set().groupby('DRUG_ID').groups
        count = []
        for drug in df['DRUG_ID'].values:
            if drug in groups.keys():
                count.append(len(groups[drug]))
            else:
                count.append(0)
        df['hits'] = count

        # add another set of drug_id but sorted in alpha numerical order
        table = HTMLTable(df, 'drugs')
        table.add_href('DRUG_ID', url="associations/drug_", suffix=".html")
        table.df.columns = [x.replace('ANOVA_FEATURE_FDR',
            'mean FEATURE ANOVA FDR') for x in table.df.columns]
        table.add_bgcolor('hits', mode='max',
                cmap=cmap_builder('white', 'orange', 'red'))

        self.jinja['drug_table'] = table.to_html(escape=False,
                header=True, index=False)

        # ---------------------- Create full table with links to all features
        df = pd.DataFrame({'FEATURE': self.report.df['FEATURE'].unique()})
        try:
            df.sort_values(by='FEATURE', inplace=True)
        except:
            df.sort('FEATURE', inplace=True)

        groups = self.report.get_significant_set().groupby('FEATURE').groups

        count = []
        for feature in df['FEATURE'].values:
            if feature in groups.keys():
                count.append(len(groups[feature]))
            else:
                count.append(0)
        df['hits'] = count

        table = HTMLTable(df, 'features')
        table.sort('hits', ascending=False)
        table.add_href('FEATURE', url="associations/", suffix=".html")
        table.add_bgcolor('hits', mode='max',
                cmap=cmap_builder('white', 'orange', 'red'))
        self.jinja['feature_table'] = table.to_html(escape=False,
                header=True, index=False)
Ejemplo n.º 4
0
    def _create_report(self, onweb=True):
        # A summary table
        diag = self.report.diagnostics()
        table = HTMLTable(diag, 'summary')
        txt = ''
        for index, row in diag.iterrows():
            if len(row.text) == 0 and len(row.value) == 0:
                txt += '----<br/>'
            else:
                txt += row.text + ": " + str(row.value) + "<br/>"
        self.jinja['summary'] = txt

        print('Creating volcano plots')
        # this can be pretty slow. so keep only 1000 most relevant
        # values and 1000 random ones to get an idea of the distribution
        v = VolcanoANOVA(self.report.df, settings=self.settings)
        v.selector(v.df, 1500, 1500, inplace=True)
        v.volcano_plot_all()
        v.savefig_and_js("volcano_all_js")

        self.jinja['volcano'] = """
            <h3></h3>
            <a href="volcano_all_js.html">
                <img alt="volcano plot for all associations"
                    src="volcano_all_js.png">
            </a>
            <br/>
            <p> A javascript version is available
                <a href="volcano_all_js.html">here</a> (
                or click on the image).</p>
        """

        # MANOVA link
        N = len(self.report.get_significant_set())
        self.jinja['manova'] = """
        There were %(N)s significant associations found.
        All significant associations have been gatherered
        in the following link: <br/><a href="manova.html">manova results</a>.
        """ % {
            'N': N
        }

        # feature summary
        df_features = self.report.feature_summary("feature_summary.png")
        filename = 'OUTPUT' + os.sep + 'features_summary.csv'
        df_features.to_csv(self.directory + os.sep + filename, sep=',')

        # drug summary
        #not_tested = [x for x in self.report.gdsc.drugIds if x not in
        #        self.report.df.DRUG_ID.unique()]
        #if len(not_tested) > 0:
        #    not_tested = """%s drugs were not analysed due to
        #    lack of valid data points: """ % len(not_tested) + \
        #            ", ".join(not_tested)
        #else:
        #    not_tested = ""
        not_tested = ""
        self.jinja['drug_not_tested'] = not_tested

        df_drugs = self.report.drug_summary(filename="drug_summary.png")
        get_name = self.report.drug_decode.get_name
        if len(self.report.drug_decode.df) > 0:
            df_drugs.index = [x + "-" + get_name(x) for x in df_drugs.index]
        filename = 'OUTPUT' + os.sep + 'drugs_summary.csv'
        df_drugs.to_csv(self.directory + os.sep + filename, sep=',')

        # --------------------------- Create table with links to all drugs
        groups = self.report.df.groupby('DRUG_ID')
        try:
            df = groups.mean()['ANOVA_FEATURE_FDR'].sort_values()
        except:
            # note double brackets for pythonn3.3
            df = groups.mean()[['ANOVA_FEATURE_FDR']].sort()
        df = df.reset_index()  # get back the Drug id in the dframe columns

        # let us add also the drug name
        df = self.report.drug_decode.drug_annotations(df)

        # let us also add number of associations computed
        counts = [len(groups.groups[k]) for k in df.DRUG_ID]
        df['Number of associations computed'] = counts
        groups = self.report.get_significant_set().groupby('DRUG_ID').groups
        count = []
        for drug in df['DRUG_ID'].values:
            if drug in groups.keys():
                count.append(len(groups[drug]))
            else:
                count.append(0)
        df['hits'] = count

        # add another set of drug_id but sorted in alpha numerical order
        table = HTMLTable(df, 'drugs')
        table.add_href('DRUG_ID')
        table.df.columns = [
            x.replace('ANOVA_FEATURE_FDR', 'mean FEATURE ANOVA FDR')
            for x in table.df.columns
        ]
        table.add_bgcolor('hits',
                          mode='max',
                          cmap=cmap_builder('white', 'orange', 'red'))

        self.jinja['drug_table'] = table.to_html(escape=False,
                                                 header=True,
                                                 index=False)

        # ---------------------- Create full table with links to all features
        df = pd.DataFrame({'FEATURE': self.report.df['FEATURE'].unique()})
        try:
            df.sort_values(by='FEATURE', inplace=True)
        except:
            df.sort('FEATURE', inplace=True)

        groups = self.report.get_significant_set().groupby('FEATURE').groups

        count = []
        for feature in df['FEATURE'].values:
            if feature in groups.keys():
                count.append(len(groups[feature]))
            else:
                count.append(0)
        df['hits'] = count

        table = HTMLTable(df, 'features')
        table.sort('hits', ascending=False)
        table.add_href('FEATURE')
        table.add_bgcolor('hits',
                          mode='max',
                          cmap=cmap_builder('white', 'orange', 'red'))
        self.jinja['feature_table'] = table.to_html(escape=False,
                                                    header=True,
                                                    index=False)

        # -------------------------------------- COSMIC table for completeness
        colnames = self.report.gdsc.features._special_names
        df = self.report.gdsc.features.df[colnames]

        # TODO
        # add other columns if possible e.g., GDSC1, GDSC2, TCGA

        df = df.reset_index()
        table = HTMLTable(df)
        url = "http://cancer.sanger.ac.uk/cell_lines/sample/overview?id="
        table.add_href('COSMIC_ID', url=url, newtab=True)
        self.jinja['cosmic_table'] = table.to_html()

        # -------------------------------------- settings and INPUT files
        input_dir = self.directory + os.sep + 'INPUT'
        filename = 'ANOVA_input.csv'
        filename = os.sep.join([input_dir, filename])
        self.report.gdsc.ic50.to_csv(filename)
        filename = os.sep.join(['INPUT', 'ANOVA_input.csv'])
        self.jinja['ic50_file'] = filename

        # the genomic features, which may be the default version
        # one provided by the user. It may have been changed
        gf_filename = os.sep.join([input_dir, 'genomic_features.csv'])
        self.report.gdsc.features.to_csv(gf_filename)
        html = """Saved <a href="INPUT/genomic_features.csv">Genomic
                  Features</a> file<br/> (possibly the default
                  version)."""
        self.jinja['gf_file'] = html

        # Always save DRUG_DECODE file even if empty
        # It may be be interpreted in other pipeline or for reproducibility
        output_filename = input_dir + os.sep + 'DRUG_DECODE.csv'
        self.report.drug_decode.to_csv(output_filename)
        html = 'Get <a href="INPUT/DRUG_DECODE.csv">Drug DECODE file</a>'
        if len(self.report.drug_decode) == 0:
            html += 'Note that DRUG_DECODE file was not provided (empty?).'
        self.jinja['drug_decode'] = html

        # Save settings as json file
        filename = os.sep.join([input_dir, 'settings.json'])
        self.settings.to_json(filename)
        filename = os.path.basename(filename)
        self.jinja['settings'] = \
                """Get the settings as a <a href="INPUT/%s">
                json file</a>.""" % filename

        # Save all Results dataframe
        filename = os.sep.join(
            [self.settings.directory, 'OUTPUT', 'results.csv'])
        ANOVAResults(self.report.df).to_csv(filename)

        code = """from gdsctools import *
import os

def getfile(filename, where='../INPUT'):
    return os.sep.join([where, filename])

# reback the IC50 and genomic features matrices
gdsc = ANOVA(getfile('%(ic50)s'), getfile('%(gf_filename)s'),
        getfile('DRUG_DECODE.csv'))
gdsc.settings.from_json(getfile('settings.json'))
gdsc.init()

# Analyse the data
results = gdsc.anova_all()

# Create the HTML report
r = ANOVAReport(gdsc, results)
r.create_html_pages(onweb=False)"""
        code = code % {
            'ic50': 'ANOVA_input.csv',
            'gf_filename': 'genomic_features.csv'
        }

        filename = os.sep.join([self.settings.directory, 'code', 'rerun.py'])
        fh = open(filename, 'w')
        fh.write(code)
        fh.close()