Ejemplo n.º 1
0
def test_regression_on_extract_1d_spectra(ad, ref_ad_factory,
                                          change_working_dir):
    """
    Regression test for the :func:`~geminidr.gmos.GMOSSpect.extract1DSpectra`
    primitive.

    Parameters
    ----------
    ad : pytest.fixture (AstroData)
        Fixture that reads the filename and loads as an AstroData object.
    change_working_dir : pytest.fixture
        Fixture that changes the working directory
        (see :mod:`astrodata.testing`).
    reference_ad : pytest.fixture
        Fixture that contains a function used to load the reference AstroData
        object (see :mod:`recipe_system.testing`).
    """

    with change_working_dir():

        logutils.config(
            file_name='log_regression_{:s}.txt'.format(ad.data_label()))

        p = primitives_gmos_spect.GMOSSpect([ad])
        p.viewer = geminidr.dormantViewer(p, None)
        p.extract1DSpectra(method="standard", width=None, grow=10)
        extracted_ad = p.writeOutputs().pop()

    ref_ad = ref_ad_factory(extracted_ad.filename)

    for ext, ref_ext in zip(extracted_ad, ref_ad):
        assert ext.data.ndim == 1
        np.testing.assert_allclose(ext.data, ref_ext.data, atol=1e-3)
Ejemplo n.º 2
0
def test_regression_for_determine_distortion_using_models_coefficients(
        ad, change_working_dir, ref_ad_factory, request):
    """
    Runs the `determineDistortion` primitive on a preprocessed data and compare
    its model with the one in the reference file.

    Parameters
    ----------
    ad : pytest.fixture (AstroData)
        Fixture that reads the filename and loads as an AstroData object.
    change_working_dir : pytest.fixture
        Fixture that changes the working directory
        (see :mod:`astrodata.testing`).
    reference_ad : pytest.fixture
        Fixture that contains a function used to load the reference AstroData
        object (see :mod:`recipe_system.testing`).
    request : pytest.fixture
        PyTest built-in containing command line options.
    """
    with change_working_dir():
        logutils.config(file_name='log_model_{:s}.txt'.format(ad.data_label()))
        p = primitives_gmos_spect.GMOSSpect([ad])
        p.viewer = geminidr.dormantViewer(p, None)
        p.determineDistortion(**fixed_parameters_for_determine_distortion)
        distortion_determined_ad = p.writeOutputs().pop()

    ref_ad = ref_ad_factory(distortion_determined_ad.filename)
    for ext, ext_ref in zip(distortion_determined_ad, ref_ad):
        c = np.ma.masked_invalid(ext.FITCOORD["coefficients"])
        c_ref = np.ma.masked_invalid(ext_ref.FITCOORD["coefficients"])
        np.testing.assert_allclose(c, c_ref, atol=2)
        
    if request.config.getoption("--do-plots"):
        do_plots(distortion_determined_ad, ref_ad)
Ejemplo n.º 3
0
def test_regression_on_flux_calibration(ad, ref_ad_factory,
                                        change_working_dir):
    """
    Regression test for the :func:`~geminidr.gmos.GMOSSpect.fluxCalibrate`
    primitive.

    Parameters
    ----------
    ad : pytest.fixture (AstroData)
        Fixture that reads the filename and loads as an AstroData object.
    change_working_dir : pytest.fixture
        Fixture that changes the working directory
        (see :mod:`astrodata.testing`).
    reference_ad : pytest.fixture
        Fixture that contains a function used to load the reference AstroData
        object (see :mod:`recipe_system.testing`).
    """

    with change_working_dir():
        logutils.config(
            file_name='log_regression_{:s}.txt'.format(ad.data_label()))
        p = primitives_gmos_spect.GMOSSpect([ad])
        p.fluxCalibrate(standard=ad)
        flux_calibrated_ad = p.writeOutputs().pop()

    ref_ad = ref_ad_factory(flux_calibrated_ad.filename)

    for flux_cal_ext, ref_ext in zip(flux_calibrated_ad, ref_ad):
        np.testing.assert_allclose(flux_cal_ext.data, ref_ext.data, atol=1e-4)
Ejemplo n.º 4
0
def create_inputs_recipe():
    """
    Creates input data for tests using pre-processed standard star and its
    calibration files.

    The raw files will be downloaded and saved inside the path stored in the
    `$DRAGONS_TEST/raw_inputs` directory. Processed files will be stored inside
    a new folder called "dragons_test_inputs". The sub-directory structure
    should reflect the one returned by the `path_to_inputs` fixture.
    """

    fnames = ["S20190808S0048.fits"]

    path = pathlib.Path('dragons_test_inputs')
    path = path / "geminidr" / "gmos" / "spect" / "test_cosmics" / "inputs"
    path.mkdir(exist_ok=True, parents=True)
    os.chdir(path)
    print('Current working directory:\n    {!s}'.format(path.cwd()))

    for fname in fnames:
        sci_ad = astrodata.open(download_from_archive(fname))
        data_label = sci_ad.data_label()

        print('===== Reducing pre-processed data =====')
        logutils.config(file_name=f'log_{data_label}.txt')
        p = GMOSSpect([sci_ad])
        p.prepare()
        p.addDQ(static_bpm=None)
        p.addVAR(read_noise=True)
        p.overscanCorrect()
        p.ADUToElectrons()
        p.addVAR(poisson_noise=True)
        p.writeOutputs()
        p.mosaicDetectors()
        p.writeOutputs()
Ejemplo n.º 5
0
def create_master_bias_for_tests():
    """
    Creates input bias data for tests.

    The raw files will be downloaded and saved inside the path stored in the
    `$DRAGONS_TEST/raw_inputs` directory. Processed files will be stored inside
    a new folder called "dragons_test_inputs". The sub-directory structure
    should reflect the one returned by the `path_to_inputs` fixture.
    """
    root_path = os.path.join("./dragons_test_inputs/")
    module_path = f"geminidr/gmos/recipes/ql/{__file__.split('.')[0]}/"
    path = os.path.join(root_path, module_path, "inputs/")

    os.makedirs(path, exist_ok=True)
    os.chdir(path)
    print('Current working directory:\n    {:s}'.format(os.getcwd()))

    associated_biases = {
        "S20180707S0043.fits": [
            "S20180707S0187.fits", "S20180707S0188.fits",
            "S20180707S0189.fits", "S20180707S0190.fits", "S20180707S0191.fits"
        ],
        "S20190502S0096.fits": [
            "S20190502S0221.fits", "S20190502S0222.fits",
            "S20190502S0223.fits", "S20190502S0224.fits", "S20190502S0225.fits"
        ],
        "S20200122S0020.fits": [
            "S20200121S0170.fits", "S20200121S0171.fits",
            "S20200121S0172.fits", "S20200121S0173.fits", "S20200121S0174.fits"
        ],
        "N20200101S0055.fits": [
            "N20200101S0240.fits", "N20200101S0241.fits",
            "N20200101S0242.fits", "N20200101S0243.fits", "N20200101S0244.fits"
        ],
        "S20180410S0120.fits": [
            "S20180410S0132.fits", "S20180410S0133.fits",
            "S20180410S0134.fits", "S20180410S0135.fits", "S20180410S0136.fits"
        ],
        "S20190410S0053.fits": [
            "S20190410S0297.fits", "S20190410S0298.fits",
            "S20190410S0299.fits", "S20190410S0300.fits", "S20190410S0301.fits"
        ],
    }

    for filename, bias_files in associated_biases.items():

        print('Downloading files...')
        sci_path = download_from_archive(filename)
        sci_ad = astrodata.open(sci_path)
        data_label = sci_ad.data_label()

        bias_paths = [download_from_archive(f) for f in bias_files]

        print('Reducing BIAS for {:s}'.format(data_label))
        logutils.config(file_name='log_bias_{}.txt'.format(data_label))
        bias_reduce = Reduce()
        bias_reduce.files.extend(bias_paths)
        bias_reduce.runr()

        shutil.rmtree("calibrations/")
Ejemplo n.º 6
0
    def test_slitdark_in_calservice(self, get_or_create_tmpdir, do_slit_dark):
        """
        Check that:

        - A bias slit calibrator exists in the local calibrations dir;
        - It can be retrieved using a getProcessedSlitBias call.
        """

        # Ensure the slit dark reduction has been done
        _, _, _ = do_slit_dark
        _, cal_service = get_or_create_tmpdir
        # import pdb; pdb.set_trace()

        assert len(glob.glob(os.path.join(
            os.getcwd(), 'calibrations', 'processed_dark', '*dark*slit*.fits'
        ))) == 1, "Couldn't find the stored slit bias in the calibrations " \
                  "system OR found multiples\n " \
                  "(calibration ls: {})\n" \
                  "(caldb contents: {})".format(
            glob.glob(os.path.join(os.getcwd(), 'calibrations',
                                   'processed_dark', '*')),
            [_ for _ in cal_service.list_files()],
        )

        # Do the master bias generation
        reduce = Reduce()
        reduce.drpkg = 'ghostdr'
        # Use one of the 'dark slit' files to try and retrieve the slit bias
        reduce.files = glob.glob(
            os.path.join(os.getcwd(), 'flat95*MEF_2x2_slit.fits'))
        reduce.mode = [
            'test',
        ]
        reduce.recipename = 'recipeRetrieveSlitDarkTest'
        # reduce.mode = ['sq', ]
        reduce.logfile = os.path.join(os.getcwd(),
                                      'reduce_slitdark_retrieve.log')
        reduce.logmode = 'quiet'
        reduce.suffix = '_testSlitDarkRetrieve'
        # FIXME cal_service will hopefully find the calibration itself later
        # reduce.ucals = normalize_ucals(reduce.files, [
        #     'processed_dark:{}'.format(
        #         glob.glob(os.path.join(
        #             'calibrations',
        #             'processed_dark',
        #             '*slit*dark*.fits'))[0]),
        # ])
        logutils.config(file_name=reduce.logfile, mode=reduce.logmode)

        try:
            reduce.runr()
        except IOError as e:
            assert 0, 'Calibration system could not locate the slit bias ' \
                      'frame ({})'.format(e.message)
        finally:
            # Teardown code
            for _ in glob.glob(
                    os.path.join(os.getcwd(),
                                 '*{}.fits'.format(reduce.suffix)), ):
                os.remove(_)
Ejemplo n.º 7
0
def test_qe_correct_is_locally_continuous(ad, arc_ad, change_working_dir):

    if ad.filename == 'S20180919S0139_flatCorrected.fits':
        pytest.xfail('FIXME: this test fails following changes on the QE '
                     'curves. Needs more investigation.')

    with change_working_dir():

        logutils.config(
            file_name='log_test_continuity{}.txt'.format(ad.data_label()))
        p = primitives_gmos_longslit.GMOSLongslit([ad])
        p.QECorrect(arc=arc_ad)

        # Need these extra steps to extract and analyse the data
        p.distortionCorrect(arc=arc_ad)
        p.findSourceApertures(max_apertures=1)
        p.skyCorrectFromSlit()
        p.traceApertures()
        p.extract1DSpectra()
        p.linearizeSpectra()
        processed_ad = p.writeOutputs().pop()

    for ext in processed_ad:
        assert not np.any(np.isnan(ext.data))
        assert not np.any(np.isinf(ext.data))

    basename = processed_ad.filename.replace('_linearized', '')
    kwargs = gap_local_kw[basename] if basename in gap_local_kw.keys() else {}
    gap = MeasureGapSizeLocallyWithSpline(processed_ad, **kwargs)

    assert abs(gap.measure_gaps(0) < 0.05)
    assert abs(gap.measure_gaps(1) < 0.05)
Ejemplo n.º 8
0
def test_fitcoord_table_and_gwcs_match(ad, change_working_dir):
    """
    Runs determineDistortion and checks that the model in the gWCS is the same
    as the model in the FITCOORD table. The FITCOORD table is never used by
    DRAGONS.

    Parameters
    ----------
    ad: pytest.fixture (AstroData)
        Fixture that reads the filename and loads as an AstroData object.
    change_working_dir : pytest.fixture
        Fixture that changes the working directory
        (see :mod:`astrodata.testing`).
    """
    with change_working_dir():
        logutils.config(file_name='log_match_{:s}.txt'.format(ad.data_label()))
        p = GMOSLongslit([ad])
        p.viewer = geminidr.dormantViewer(p, None)
        p.determineDistortion(**fixed_parameters_for_determine_distortion)
        distortion_determined_ad = p.writeOutputs().pop()

    model = distortion_determined_ad[0].wcs.get_transform(
        "pixels", "distortion_corrected")

    fitcoord = distortion_determined_ad[0].FITCOORD
    fitcoord_model = am.table_to_model(fitcoord[0])
    fitcoord_inv = am.table_to_model(fitcoord[1])

    np.testing.assert_allclose(model[1].parameters, fitcoord_model.parameters)
    np.testing.assert_allclose(model.inverse[1].parameters,
                               fitcoord_inv.parameters)
Ejemplo n.º 9
0
def test_regression_for_determine_distortion_using_wcs(ad, change_working_dir,
                                                       ref_ad_factory):
    """
    Runs the `determineDistortion` primitive on a preprocessed data and compare
    its model with the one in the reference file. The distortion model needs to
    be reconstructed because different coefficients might return same results.

    Parameters
    ----------
    ad : pytest.fixture (AstroData)
        Fixture that reads the filename and loads as an AstroData object.
    change_working_dir : pytest.fixture
        Fixture that changes the working directory
        (see :mod:`astrodata.testing`).
    reference_ad : pytest.fixture
        Fixture that contains a function used to load the reference AstroData
        object (see :mod:`recipe_system.testing`).
    """
    with change_working_dir():
        logutils.config(
            file_name='log_fitcoord_{:s}.txt'.format(ad.data_label()))
        p = GMOSLongslit([ad])
        p.viewer = geminidr.dormantViewer(p, None)
        p.determineDistortion(**fixed_parameters_for_determine_distortion)
        distortion_determined_ad = p.writeOutputs().pop()

    ref_ad = ref_ad_factory(distortion_determined_ad.filename)
    model = distortion_determined_ad[0].wcs.get_transform(
        "pixels", "distortion_corrected")[1]
    ref_model = ref_ad[0].wcs.get_transform("pixels",
                                            "distortion_corrected")[1]

    X, Y = np.mgrid[:ad[0].shape[0], :ad[0].shape[1]]

    np.testing.assert_allclose(model(X, Y), ref_model(X, Y), atol=1)
Ejemplo n.º 10
0
 def setup_class(cls):
     """Run once at the beginning."""
     if os.path.exists(logfilename):
         os.remove(logfilename)
     log = logutils.get_logger(__name__)
     log.root.handlers = []
     logutils.config(mode='standard', file_name=logfilename)
Ejemplo n.º 11
0
 def setup_class(cls):
     """Run once at the beginning."""
     if os.path.exists(logfilename):
         os.remove(logfilename)
     log = logutils.get_logger(__name__)
     log.root.handlers = []
     logutils.config(mode='standard', console_lvl='stdinfo',
                     file_name=logfilename)
Ejemplo n.º 12
0
def test_reduce_image_GN_EEV_2x2_g(path_to_inputs):
    logutils.config(file_name='gmos_test_reduce_image_GN_EEV_2x2_g.log')

    calib_files = []

    raw_subdir = 'GMOS/GN-2002A-Q-89'

    all_files = sorted(glob.glob(
        os.path.join(path_to_inputs, raw_subdir, '*.fits')))
    assert len(all_files) > 1

    list_of_bias = dataselect.select_data(
        all_files,
        ['BIAS'],
        []
    )

    list_of_flats = dataselect.select_data(
        all_files,
        ['IMAGE', 'FLAT'],
        [],
        dataselect.expr_parser('filter_name=="g"')
    )

    # These old data don't have an OBSCLASS keyword:
    list_of_science_files = dataselect.select_data(
        all_files, [],
        ['CAL'],
        dataselect.expr_parser(
            'object=="PerseusField4" and filter_name=="g"'
        )
    )

    reduce_bias = Reduce()
    assert len(reduce_bias.files) == 0

    reduce_bias.files.extend(list_of_bias)
    assert len(reduce_bias.files) == len(list_of_bias)

    reduce_bias.runr()

    calib_files.append(
        'processed_bias:{}'.format(reduce_bias.output_filenames[0])
    )

    reduce_flats = Reduce()
    reduce_flats.files.extend(list_of_flats)
    reduce_flats.ucals = normalize_ucals(reduce_flats.files, calib_files)
    reduce_flats.runr()

    calib_files.append(
        'processed_flat:{}'.format(reduce_flats.output_filenames[0])
    )

    reduce_target = Reduce()
    reduce_target.files.extend(list_of_science_files)
    reduce_target.ucals = normalize_ucals(reduce_target.files, calib_files)
    reduce_target.runr()
Ejemplo n.º 13
0
def create_quartz_inputs():
    """
    Creates input data for tests using pre-processed twilight flat data and its
    calibration files.

    The raw files will be downloaded and saved inside the path stored in the
    `$DRAGONS_TEST/raw_inputs` directory. Processed files will be stored inside
    a new folder called "dragons_test_inputs". The sub-directory structure
    should reflect the one returned by the `path_to_inputs` fixture.
    """
    associated_calibrations = {
        "N20200715S0059.fits": {
            "quartz": ["N20200715S0059.fits"],
        },
        "S20130601S0121.fits": {
            "quartz": ["S20130601S0121.fits"],
        },
        "S20190204S0081.fits": {
            "quartz": ["S20190204S0081.fits"],
        },
    }

    root_path = os.path.join("./dragons_test_inputs/")
    module_path = "geminidr/gmos/longslit/test_slit_illum_correct/inputs"
    path = os.path.join(root_path, module_path)
    os.makedirs(path, exist_ok=True)

    cwd = os.getcwd()
    os.chdir(path)
    print('Current working directory:\n    {:s}'.format(os.getcwd()))

    for filename, cals in associated_calibrations.items():

        print('Download raw files')
        quartz_path = [download_from_archive(f) for f in cals['quartz']]

        quartz_ad = astrodata.open(quartz_path[0])
        data_label = quartz_ad.data_label()

        print('Reducing quartz lamp:')
        logutils.config(file_name='log_quartz_{}.txt'.format(data_label))
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            p = GMOSLongslit([astrodata.open(f) for f in quartz_path])
            p.prepare()
            p.addDQ(static_bpm=None)
            p.addVAR(read_noise=True)
            p.overscanCorrect()
            # p.biasCorrect(bias=bias_master)
            p.ADUToElectrons()
            p.addVAR(poisson_noise=True)
            p.stackFrames()

            # Write non-mosaicked data
            p.writeOutputs(suffix="_quartz", strip=True)

    os.chdir(cwd)
Ejemplo n.º 14
0
def reduce(file_list,
           label,
           calib_files,
           recipe_name=None,
           save_to=None,
           user_pars=None):
    """
    Helper function used to prevent replication of code.

    Parameters
    ----------
    file_list : list
        List of files that will be reduced.
    label : str
        Labed used on log files name.
    calib_files : list
        List of calibration files properly formatted for DRAGONS Reduce().
    recipe_name : str, optional
        Name of the recipe used to reduce the data.
    save_to : str, optional
        Stores the calibration files locally in a list.
    user_pars : list, optional
        List of user parameters

    Returns
    -------
    str : Output reduced file.
    list : An updated list of calibration files.
    """
    objgraph = pytest.importorskip("objgraph")

    logutils.get_logger().info("\n\n\n")
    logutils.config(file_name=f"test_image_{label}.log")
    r = Reduce()
    r.files = file_list
    r.ucals = normalize_ucals(r.files, calib_files)
    r.uparms = user_pars

    if recipe_name:
        r.recipename = recipe_name

    r.runr()
    output_file = r.output_filenames[0]

    if save_to:
        calib_files.append("{}:{}".format(
            save_to,
            os.path.join("calibrations", save_to, r.output_filenames[0])))
        [os.remove(f) for f in r.output_filenames]

    # check that we are not leaking objects
    assert len(objgraph.by_type('NDAstroData')) == 0

    return output_file, calib_files
Ejemplo n.º 15
0
    def _reduce_bias(datalabel, bias_fnames):
        with output_path():
            logutils.config(file_name='log_bias_{}.txt'.format(datalabel))

            reduce = Reduce()
            reduce.files.extend(bias_fnames)
            reduce.runr()

            master_bias = reduce.output_filenames.pop()

        return master_bias
Ejemplo n.º 16
0
    def _reduce_arc(dlabel, arc_fnames):
        with output_path():
            # Use config to prevent duplicated outputs when running Reduce via API
            logutils.config(file_name='log_arc_{}.txt'.format(dlabel))

            reduce = Reduce()
            reduce.files.extend(arc_fnames)
            reduce.runr()

            master_arc = reduce.output_filenames.pop()
        return master_arc
Ejemplo n.º 17
0
    def _reduce_arc(dlabel, arc_fnames):
        with change_working_dir():
            print("Reducing ARCs in folder:\n  {}".format(os.getcwd()))
            # Use config to prevent duplicated outputs when running Reduce via API
            logutils.config(file_name='log_arc_{}.txt'.format(dlabel))

            reduce = Reduce()
            reduce.files.extend(arc_fnames)
            reduce.runr()

            master_arc = reduce.output_filenames.pop()
        return master_arc
Ejemplo n.º 18
0
    def _reduce_bias(datalabel, bias_fnames):
        with change_working_dir():
            print("Reducing BIAS in folder:\n  {}".format(os.getcwd()))
            logutils.config(file_name='log_bias_{}.txt'.format(datalabel))

            reduce = Reduce()
            reduce.files.extend(bias_fnames)
            reduce.runr()

            master_bias = reduce.output_filenames.pop()

        return master_bias
Ejemplo n.º 19
0
def create_inputs_recipe():
    """
    Creates input data for tests using pre-processed standard star and its
    calibration files.

    The raw files will be downloaded and saved inside the path stored in the
    `$DRAGONS_TEST/raw_inputs` directory. Processed files will be stored inside
    a new folder called "dragons_test_inputs". The sub-directory structure
    should reflect the one returned by the `path_to_inputs` fixture.
    """
    import os
    from astrodata.testing import download_from_archive

    root_path = os.path.join("./dragons_test_inputs/")
    module_path = "geminidr/gmos/spect/{}".format(__file__.split('.')[0])
    path = os.path.join(root_path, module_path)

    os.makedirs(path, exist_ok=True)
    os.chdir(path)
    os.makedirs("inputs/", exist_ok=True)
    print('Current working directory:\n    {:s}'.format(os.getcwd()))

    for filename in datasets:
        print('Downloading files...')
        basename = filename.split("_")[0] + ".fits"
        sci_path = download_from_archive(basename)
        sci_ad = astrodata.open(sci_path)
        data_label = sci_ad.data_label()

        print('Reducing pre-processed data:')
        logutils.config(file_name='log_{}.txt'.format(data_label))

        p = primitives_gmos_longslit.GMOSLongslit([sci_ad])
        p.prepare()
        p.addDQ(static_bpm=None, user_bpm=None, add_illum_mask=False)
        p.addVAR(read_noise=True, poisson_noise=False)
        p.overscanCorrect(function="spline",
                          high_reject=3.,
                          low_reject=3.,
                          nbiascontam=0,
                          niterate=2,
                          order=None)
        p.ADUToElectrons()
        p.addVAR(poisson_noise=True, read_noise=False)
        p.mosaicDetectors()
        p.makeIRAFCompatible()
        p.determineDistortion(**fixed_test_parameters_for_determine_distortion)

        os.chdir("inputs")
        processed_ad = p.writeOutputs().pop()
        os.chdir("../../")
        print('Wrote pre-processed file to:\n'
              '    {:s}'.format(processed_ad.filename))
Ejemplo n.º 20
0
    def test_can_run_reduce_bias(config):
        """
        Make sure that the reduce_BIAS works for spectroscopic data.
        """
        logutils.config(mode='quiet',
                        file_name=os.path.join(config.log_dir,
                                               'reduce_GMOS_LS_bias.log'))

        reduce = Reduce()
        reduce.files.extend(config.biases)
        reduce.upload = 'calibs'
        reduce.runr()
Ejemplo n.º 21
0
def log():

    if os.path.exists(logfilename):
        os.remove(logfilename)

    log = logutils.get_logger(__name__)
    log.root.handlers = []
    logutils.config(mode='standard', file_name=logfilename)

    yield log

    os.remove(logfilename)
Ejemplo n.º 22
0
    def test_can_run_reduce_science(config):
        """
        Make sure that the recipes_ARC_LS_SPECT works for spectroscopic data.
        """
        logutils.config(mode='quiet',
                        file_name=os.path.join(config.log_dir,
                                               'reduce_GMOS_LS_science.log'))

        reduce = Reduce()
        reduce.files.extend(config.science)
        reduce.upload = 'calibs'
        reduce.runr()
Ejemplo n.º 23
0
    def do_overscan_subtract(self, get_or_create_tmpdir, request):
        """
        Run overscan correction on the main data.

        .. note::
            Fixture.
        """
        # Copy the raw data file into here
        rawfilename = 'bias*{}*.fits'.format(request.param)
        tmpsubdir, cal_service = get_or_create_tmpdir
        # Make sure we're working inside the temp dir
        # rawfiles = glob.glob(os.path.join(
        #     os.path.dirname(os.path.abspath(__file__)),
        #     'testdata',
        #     rawfilename))
        # shutil.copy(
        #     rawfiles[0],
        #     os.path.join(tmpsubdir.dirname, tmpsubdir.basename))
        rawfile = glob.glob(
            os.path.join(tmpsubdir.dirname, tmpsubdir.basename,
                         rawfilename))[0]

        # Do the overscan subtraction
        reduce = Reduce()
        reduce.drpkg = 'ghostdr'
        reduce.files = [
            rawfile,
        ]
        reduce.mode = [
            'test',
        ]
        reduce.recipename = 'recipeBiasRemoveOverscan'
        reduce.logfile = os.path.join(tmpsubdir.dirname, tmpsubdir.basename,
                                      'reduce_overscancorrect.log')
        reduce.logmode = 'quiet'
        reduce.suffix = '_testOverscanCorrect'
        logutils.config(file_name=reduce.logfile, mode=reduce.logmode)
        reduce.runr()

        corrfilename = os.path.join(tmpsubdir.dirname, tmpsubdir.basename,
                                    '*' + reduce.suffix + '.fits')
        corrfilename = glob.glob(corrfilename)[0]
        corrfile = os.path.join(tmpsubdir.dirname, tmpsubdir.basename,
                                corrfilename)

        # Return filenames of raw, subtracted files
        yield rawfile, corrfile

        # Execute teardown code
        for _ in glob.glob(
                os.path.join(os.getcwd(), '*{}.fits'.format(reduce.suffix))):
            os.remove(_)
Ejemplo n.º 24
0
def setup_log(path_to_outputs):
    """
    Fixture that setups DRAGONS' logging system to avoid duplicated outputs.

    Parameters
    ----------
    path_to_outputs : fixture
        Custom fixture defined in `astrodata.testing` containing the path to
        the output folder.
    """
    log_file = "{}.log".format(os.path.splitext(os.path.basename(__file__))[0])
    log_file = os.path.join(path_to_outputs, log_file)

    logutils.config(mode="standard", file_name=log_file)
def test_regression_determine_wavelength_solution(ad, fwidth, order, min_snr,
                                                  caplog, change_working_dir,
                                                  ref_ad_factory):
    """
    Make sure that the wavelength solution gives same results on different
    runs.
    """
    caplog.set_level(logging.INFO, logger="geminidr")

    with change_working_dir():
        logutils.config(
            file_name='log_regress_{:s}.txt'.format(ad.data_label()))
        p = primitives_gmos_spect.GMOSSpect([ad])
        p.viewer = geminidr.dormantViewer(p, None)

        p.determineWavelengthSolution(
            order=order,
            min_snr=min_snr,
            fwidth=fwidth,
            **determine_wavelength_solution_parameters)

        wcalibrated_ad = p.writeOutputs().pop()

        for record in caplog.records:
            if record.levelname == "WARNING":
                assert "No acceptable wavelength solution found" not in record.message

    ref_ad = ref_ad_factory(wcalibrated_ad.filename)
    table = wcalibrated_ad[0].WAVECAL
    table_ref = ref_ad[0].WAVECAL

    model = astromodels.dict_to_chebyshev(
        dict(zip(table["name"], table["coefficients"])))

    ref_model = astromodels.dict_to_chebyshev(
        dict(zip(table_ref["name"], table_ref["coefficients"])))

    x = np.arange(wcalibrated_ad[0].shape[1])
    wavelength = model(x)
    ref_wavelength = ref_model(x)

    pixel_scale = wcalibrated_ad[0].pixel_scale()  # arcsec / px
    slit_size_in_arcsec = float(wcalibrated_ad[0].focal_plane_mask().replace(
        'arcsec', ''))
    slit_size_in_px = slit_size_in_arcsec / pixel_scale
    dispersion = abs(
        wcalibrated_ad[0].dispersion(asNanometers=True))  # nm / px

    tolerance = 0.5 * (slit_size_in_px * dispersion)
    np.testing.assert_allclose(wavelength, ref_wavelength, rtol=tolerance)
Ejemplo n.º 26
0
def test_reduce_image_GN_HAM_2x2_z(path_to_inputs):
    objgraph = pytest.importorskip("objgraph")

    logutils.config(file_name='gmos_test_reduce_image_GN_HAM_2x2_z.log')

    calib_files = []

    raw_subdir = 'GMOS/GN-2017B-LP-15'
    all_files = sorted(glob.glob(
        os.path.join(path_to_inputs, raw_subdir, '*.fits')))
    assert len(all_files) > 1

    list_of_bias = dataselect.select_data(all_files, ['BIAS'], [])

    expr = dataselect.expr_parser('filter_name=="z"')
    list_of_z_flats = dataselect.select_data(all_files, ['TWILIGHT'], [], expr)

    expr = dataselect.expr_parser(
        'observation_class=="science" and filter_name=="z"'
    )
    list_of_science = dataselect.select_data(all_files, [], ['CAL'], expr)

    def reduce(filelist, saveto=None, label='', calib_files=None,
               recipename=None):
        red = Reduce()
        assert len(red.files) == 0
        red.files.extend(filelist)
        assert len(red.files) == len(filelist)
        if calib_files:
            red.ucals = normalize_ucals(red.files, calib_files)
        if recipename:
            red.recipename = recipename
        red.runr()
        if saveto:
            calib_files.append(f'{saveto}:{red.output_filenames[0]}')

        # check that we are not leaking objects
        assert len(objgraph.by_type('NDAstroData')) == 0

    reduce(list_of_bias, saveto='processed_bias', label='bias',
           calib_files=calib_files)
    reduce(list_of_z_flats, saveto='processed_flat', label='flat',
           calib_files=calib_files)

    # If makeFringe is included in the science recipe, this can be omitted:
    reduce(list_of_science, saveto='processed_fringe', label='fringe',
           calib_files=calib_files, recipename='makeProcessedFringe')

    reduce(list_of_science, label='science', calib_files=calib_files)
Ejemplo n.º 27
0
    def test_slitbias_in_calservice(self, get_or_create_tmpdir):
        """
        Check that:

        - A bias slit calibrator exists in the local calibrations dir;
        - It can be retrieved using a getProcessedSlitBias call.
        """
        assert len(glob.glob(os.path.join(
            os.getcwd(), 'calibrations', 'processed_bias', '*bias*slit*.fits'
        ))) == 1, "Couldn't find the stored slit bias in the calibrations " \
                  "system OR found multiples"

        # Do the master bias generation
        reduce = Reduce()
        reduce.drpkg = 'ghostdr'
        # Use one of the 'dark slit' files to try and retrieve the slit bias
        reduce.files = [
            os.path.join(os.getcwd(), 'dark95_1_MEF_2x2_slit.fits'),
        ]
        reduce.mode = [
            'test',
        ]
        reduce.recipename = 'recipeRetrieveSlitBiasTest'
        # reduce.mode = ['sq', ]
        # reduce.recipename = 'makeProcessedBias'
        reduce.logfile = os.path.join(os.getcwd(),
                                      'reduce_slitbias_retrieve.log')
        # FIXME cal_service will hopefully find the calibration itself later
        reduce.ucals = normalize_ucals(reduce.files, [
            'processed_bias:{}'.format(
                glob.glob(
                    os.path.join('calibrations', 'processed_bias',
                                 '*slit*bias*.fits'))[0]),
        ])
        reduce.logmode = 'quiet'
        reduce.suffix = '_testSlitBiasRetrieve'
        logutils.config(file_name=reduce.logfile, mode=reduce.logmode)

        try:
            reduce.runr()
        except IOError as e:
            assert 0, 'Calibration system could not locate the slit bias ' \
                      'frame ({})'.format(e.message)
        finally:
            # Teardown code
            for _ in glob.glob(
                    os.path.join(os.getcwd(),
                                 '*{}.fits'.format(reduce.suffix)), ):
                os.remove(_)
Ejemplo n.º 28
0
def test_regression_on_calculate_sensitivity(ad, change_working_dir, ref_ad_factory):

    with change_working_dir():
        logutils.config(file_name='log_regression_{:s}.txt'.format(ad.data_label()))
        p = primitives_gmos_spect.GMOSSpect([ad])
        p.calculateSensitivity(bandpass=5, order=6)
        calc_sens_ad = p.writeOutputs().pop()

    assert hasattr(calc_sens_ad[0], 'SENSFUNC')

    ref_ad = ref_ad_factory(ad.filename)

    for calc_sens_ext, ref_ext in zip(ad, ref_ad):
        np.testing.assert_allclose(
            calc_sens_ext.data, ref_ext.data, atol=1e-4)
Ejemplo n.º 29
0
def processed_slit_illum(change_working_dir, path_to_inputs, request):
    """
    Returns the processed slit illumination function that will be analysed.

    Parameters
    ----------
    change_working_dir : pytest.fixture
        Fixture that changes the working directory (see :mod:`astrodata.testing`).
    path_to_inputs : pytest.fixture
        Fixture defined in :mod:`astrodata.testing` with the path to the
        pre-processed input file.
    request : pytest.fixture
        PyTest built-in fixture containing information about parent test.

    Returns
    -------
    AstroData
        Input spectrum processed up to right before the `applyQECorrection`.
    """
    twi_filename = request.param
    twi_path = download_from_archive(twi_filename)
    twi_ad = astrodata.open(twi_path)

    print(twi_ad.tags)

    master_bias = os.path.join(
        path_to_inputs, associated_calibrations[twi_filename])

    assert os.path.exists(master_bias)

    calibration_files = ['processed_bias:{}'.format(master_bias)]

    with change_working_dir():
        print("Reducing SLITILLUM in folder:\n  {}".format(os.getcwd()))
        logutils.config(
            file_name='log_flat_{}.txt'.format(twi_ad.data_label()))

        reduce = Reduce()
        reduce.files.extend([twi_path])
        reduce.mode = 'sq'
        reduce.recipename = 'makeProcessedSlitIllum'
        reduce.ucals = normalize_ucals(reduce.files, calibration_files)
        reduce.runr()

        _processed_twi_filename = reduce.output_filenames.pop()
        _processed_twi = astrodata.open(_processed_twi_filename)

    return _processed_twi
Ejemplo n.º 30
0
def test_regression_determine_wavelength_solution(ad, fwidth, order, min_snr,
                                                  caplog, change_working_dir,
                                                  ref_ad_factory, request):
    """
    Make sure that the wavelength solution gives same results on different
    runs.
    """
    caplog.set_level(logging.INFO, logger="geminidr")

    with change_working_dir():
        logutils.config(
            file_name='log_regress_{:s}.txt'.format(ad.data_label()))
        p = GMOSLongslit([ad])
        p.viewer = geminidr.dormantViewer(p, None)

        p.determineWavelengthSolution(
            order=order,
            min_snr=min_snr,
            fwidth=fwidth,
            **determine_wavelength_solution_parameters)

        wcalibrated_ad = p.writeOutputs().pop()

        for record in caplog.records:
            if record.levelname == "WARNING":
                assert "No acceptable wavelength solution found" not in record.message

    ref_ad = ref_ad_factory(wcalibrated_ad.filename)
    model = am.get_named_submodel(wcalibrated_ad[0].wcs.forward_transform,
                                  "WAVE")
    ref_model = am.get_named_submodel(ref_ad[0].wcs.forward_transform, "WAVE")

    x = np.arange(wcalibrated_ad[0].shape[1])
    wavelength = model(x)
    ref_wavelength = ref_model(x)

    pixel_scale = wcalibrated_ad[0].pixel_scale()  # arcsec / px
    slit_size_in_arcsec = float(wcalibrated_ad[0].focal_plane_mask().replace(
        'arcsec', ''))
    slit_size_in_px = slit_size_in_arcsec / pixel_scale
    dispersion = abs(
        wcalibrated_ad[0].dispersion(asNanometers=True))  # nm / px

    tolerance = 0.5 * (slit_size_in_px * dispersion)
    np.testing.assert_allclose(wavelength, ref_wavelength, rtol=tolerance)

    if request.config.getoption("--do-plots"):
        do_plots(wcalibrated_ad)
Ejemplo n.º 31
0
    def _reduce_flat(datalabel, flat_fname, master_bias):
        with output_path():
            logutils.config(file_name='log_flat_{}.txt'.format(datalabel))

            calibration_files = ['processed_bias:{}'.format(master_bias)]

            reduce = Reduce()
            reduce.files.extend([flat_fname])
            reduce.mode = 'ql'
            reduce.ucals = normalize_ucals(reduce.files, calibration_files)
            reduce.runr()

            master_flat = reduce.output_filenames.pop()
            master_flat_ad = astrodata.open(master_flat)

        return master_flat_ad
Ejemplo n.º 32
0
def test_reduce_image(test_path, caldb):

    logutils.config(file_name='f2_test_reduce_image.log')

    caldb.init(wipe=True)

    all_files = glob.glob(
        os.path.join(test_path, 'F2/test_reduce/', '*.fits'))
    assert len(all_files) > 1

    darks_3s = dataselect.select_data(
        all_files, ['F2', 'DARK', 'RAW'], [],
        dataselect.expr_parser('exposure_time==3'))

    darks_20s = dataselect.select_data(
        all_files, ['F2', 'DARK', 'RAW'], [],
        dataselect.expr_parser('exposure_time==20'))

    darks_120s = dataselect.select_data(
        all_files, ['F2', 'DARK', 'RAW'], [],
        dataselect.expr_parser('exposure_time==120'))

    flats = dataselect.select_data(
        all_files, ['F2', 'FLAT', 'RAW'], [],
        dataselect.expr_parser('filter_name=="Y"'))

    science = dataselect.select_data(
        all_files, ['F2', 'RAW'], ['CAL'],
        dataselect.expr_parser('filter_name=="Y"'))

    for darks in [darks_3s, darks_20s, darks_120s]:

        reduce_darks = Reduce()
        assert len(reduce_darks.files) == 0

        reduce_darks.files.extend(darks)
        assert len(reduce_darks.files) == len(darks)

        reduce_darks.runr()

        caldb.add_cal(reduce_darks.output_filenames[0])

    reduce_bpm = Reduce()
    reduce_bpm.files.extend(flats)
    reduce_bpm.files.extend(darks_3s)
    reduce_bpm.recipename = 'makeProcessedBPM'
    reduce_bpm.runr()

    bpm_filename = reduce_bpm.output_filenames[0]

    reduce_flats = Reduce()
    reduce_flats.files.extend(flats)
    reduce_flats.uparms = [('addDQ:user_bpm', bpm_filename)]
    reduce_flats.runr()

    caldb.add_cal(reduce_flats.output_filenames[0])

    reduce_target = Reduce()
    reduce_target.files.extend(science)
    reduce_target.uparms = [('addDQ:user_bpm', bpm_filename)]
    reduce_target.runr()

    for f in caldb.list_files():
        print(f)
Ejemplo n.º 33
0
def test_reduce_image(test_path, caldb):

    logutils.config(file_name='gsaoi_test_reduce_image.log')

    caldb.init(wipe=True)

    all_files = glob.glob(
        os.path.join(test_path, 'GSAOI/test_reduce/', '*.fits'))
    assert len(all_files) > 1

    list_of_darks = dataselect.select_data(
        all_files, ['DARK'], [])

    list_of_kshort_flats = dataselect.select_data(
        all_files, ['FLAT'], [],
        dataselect.expr_parser('filter_name=="Kshort"'))

    list_of_h_flats = dataselect.select_data(
        all_files, ['FLAT'], [],
        dataselect.expr_parser('filter_name=="H"'))

    list_of_std_LHS_2026 = dataselect.select_data(
        all_files, [], [],
        dataselect.expr_parser('object=="LHS 2026"'))

    list_of_std_cskd8 = dataselect.select_data(
        all_files, [], [],
        dataselect.expr_parser('object=="cskd-8"'))

    list_of_science_files = dataselect.select_data(
        all_files, [], [],
        dataselect.expr_parser('observation_class=="science" and exposure_time==60.'))

    for darks in [list_of_darks]:

        reduce_darks = Reduce()
        assert len(reduce_darks.files) == 0

        reduce_darks.files.extend(darks)
        assert len(reduce_darks.files) == len(darks)

        reduce_darks.runr()

        caldb.add_cal(reduce_darks.output_filenames[0])

    reduce_bpm = Reduce()
    reduce_bpm.files.extend(list_of_h_flats)
    reduce_bpm.files.extend(list_of_darks)
    reduce_bpm.recipename = 'makeProcessedBPM'
    reduce_bpm.runr()

    bpm_filename = reduce_bpm.output_filenames[0]

    reduce_flats = Reduce()
    reduce_flats.files.extend(list_of_kshort_flats)
    reduce_flats.uparms = [('addDQ:user_bpm', bpm_filename)]
    reduce_flats.runr()

    caldb.add_cal(reduce_flats.output_filenames[0])

    reduce_target = Reduce()
    reduce_target.files.extend(list_of_science_files)
    reduce_target.uparms = [('addDQ:user_bpm', bpm_filename)]
    reduce_target.runr()

    for f in caldb.list_files():
        print(f)
Ejemplo n.º 34
0
#!/usr/bin/env python

import glob
import pytest
import os

from gempy.adlibrary import dataselect
from recipe_system.reduction.coreReduce import Reduce

from gempy.utils import logutils

logutils.config(file_name='dummy.log')


@pytest.fixture
def test_path():

    try:
        path = os.environ['TEST_PATH']
    except KeyError:
        pytest.skip("Could not find environment variable: $TEST_PATH")

    if not os.path.exists(path):
        pytest.skip("Could not find path stored in $TEST_PATH: {}".format(path))

    return path


def test_expr_parser_can_parse_for_filter_name():
    """
    Does exactly what expr_parser does when the requested descriptor is