def test_c(self, interpolator_islith_nofault): """ Two layers a bit curvy, drift degree 0 """ # Importing the data from csv files and settign extent and resolution geo_data = gempy.create_data([0, 10, 0, 10, -10, 0], [50, 50, 50], path_o=input_path+"/GeoModeller/test_c/test_c_Foliations.csv", path_i=input_path+"/GeoModeller/test_c/test_c_Points.csv") geo_data.set_theano_function(interpolator_islith_nofault) # Compute model sol = gempy.compute_model(geo_data) gempy.plot.plot_section(geo_data, 25, direction='y', show_data=True) plt.savefig(os.path.dirname(__file__)+'/../figs/test_c.png', dpi=200) if update_sol: np.save(input_path + '/test_c_sol.npy', sol.lith_block[test_values]) # Load model real_sol = np.load(input_path + '/test_c_sol.npy') # Checking that the plots do not rise errors gempy.plot.plot_section(geo_data, 25, direction='y', show_data=True) gempy.plot.plot_scalar_field(geo_data, 25) # We only compare the block because the absolute pot field I changed it np.testing.assert_array_almost_equal(np.round(sol.lith_block[test_values]), real_sol, decimal=0)
def test_e(self, interpolator): """ Two layers a bit curvy, 1 fault """ # Importing the data from csv files and settign extent and resolution geo_data = gempy.create_data([0, 10, 0, 10, -10, 0], [50, 50, 50], path_o=input_path+"/GeoModeller/test_e/test_e_Foliations.csv", path_i=input_path+"/GeoModeller/test_e/test_e_Points.csv") gempy.set_series(geo_data, {'fault1': 'f1','series': ('A', 'B')}) geo_data.set_is_fault('fault1') geo_data.set_theano_function(interpolator) # Compute model sol = gempy.compute_model(geo_data) if update_sol: np.save(input_path + '/test_e_sol.npy', sol.lith_block[test_values]) gempy.plot.plot_section(geo_data, 25, direction='y', show_data=True) plt.savefig(os.path.dirname(__file__)+'/../figs/test_e.png', dpi=200) # Load model real_sol = np.load(input_path + '/test_e_sol.npy') # We only compare the block because the absolute pot field I changed it np.testing.assert_array_almost_equal(np.round(sol.lith_block[test_values]), real_sol, decimal=0)
def create_model(resolution=[50, 50, 50]): geo_data = gp.create_data( 'fault', extent=[0, 1000, 0, 1000, 0, 1000], resolution=resolution, path_o=path_to_data + "model5_orientations.csv", path_i=path_to_data + "model5_surface_points.csv") geo_data.get_data() gp.map_stack_to_surfaces(geo_data, { "Fault_Series": 'fault', "Strat_Series": ('rock2', 'rock1') }) geo_data.set_is_fault(['Fault_Series']) interp_data = gp.set_interpolator(geo_data, theano_optimizer='fast_compile') sol = gp.compute_model(geo_data) geo = gp.plot_2d(geo_data, direction='y', show_data=True, show_lith=True, show_boundaries=False) geo.axes[0].set_title("") plt.tight_layout() plt.close() return geo.axes[0].figure
def vista_obj(self) -> vs.Vista: """Return a GemPy Vista instance with basic geomodel attached.""" from gempy.plot import vista as vs geo_model = gp.create_data( [0, 2000, 0, 2000, 0, 2000], [50, 50, 50], path_o=input_path + '/input_data/tut_chapter1' '/simple_fault_model_orientations.csv', path_i=input_path + '/input_data/tut_chapter1' '/simple_fault_model_points.csv') gp.set_series( geo_model, { "Fault_Series": 'Main_Fault', "Strat_Series": ('Sandstone_2', 'Siltstone', 'Shale', 'Sandstone_1') }) geo_model.set_is_fault(['Fault_Series']) gp.set_interpolator(geo_model) gp.compute_model(geo_model) # with open(os.path.dirname(__file__)+"input_data/geomodel_fabian_sol.p", "rb") as f: # geo_model.solutions = load(f) return vs.Vista(geo_model)
def test_set_orientation_from_neighbours_all(): data_path = 'https://raw.githubusercontent.com/cgre-aachen/gempy_data/master/' path_to_data = data_path + "/data/input_data/jan_models/" geo_data = gp.create_data('fault', extent=[0, 1000, 0, 1000, 0, 1000], resolution=[50, 50, 50], path_o=path_to_data + "model5_orientations.csv", path_i=path_to_data + "model5_surface_points.csv") # count orientations before orientation calculation length_pre = geo_data._orientations.df.shape[0] # find neighbours neighbours = gp.select_nearest_surfaces_points(geo_data, geo_data._surface_points.df, 2) # calculate all fault orientations gp.set_orientation_from_neighbours_all(geo_data, neighbours) # count orientations after orientation calculation length_after = geo_data._orientations.df.shape[0] assert np.array_equal(geo_data._surface_points.df.shape[0], length_after - length_pre)
def test_b(self, theano_f): """ Two layers a bit curvy, drift degree 1 """ # Importing the data from csv files and settign extent and resolution geo_data = gempy.create_data([0, 10, 0, 10, -10, 0], [50, 50, 50], path_o=input_path+"/GeoModeller/test_b/test_b_Foliations.csv", path_i=input_path+"/GeoModeller/test_b/test_b_Points.csv") interp_data = theano_f # Updating the interp data which has theano compiled interp_data.update_interpolator(geo_data, u_grade=[1]) gempy.get_kriging_parameters(interp_data, verbose=1) # Compute model sol = gempy.compute_model(interp_data) gempy.plot_section(geo_data, sol[0][0, :], 25, direction='y', plot_data=True) plt.savefig(os.path.dirname(__file__)+'/figs/test_b.png', dpi=200) if False: np.save(input_path + '/test_b_sol.npy', sol) # Load model real_sol = np.load(input_path + '/test_b_sol.npy') # Checking that the plots do not rise errors gempy.plot_section(geo_data, sol[0][0, :], 25, direction='y', plot_data=True) gempy.plot_scalar_field(geo_data, sol[0][1, :], 25) # We only compare the block because the absolute pot field I changed it np.testing.assert_array_almost_equal(np.round(sol[0][0, :]), real_sol[0][0, :], decimal=0)
def test_a(self, theano_f): """ 2 Horizontal layers with drift 0 """ # Importing the data from csv files and settign extent and resolution geo_data = gempy.create_data([0, 10, 0, 10, -10, 0], [50, 50, 50], path_o=os.path.dirname(__file__)+"/GeoModeller/test_a/test_a_Foliations.csv", path_i=os.path.dirname(__file__)+"/GeoModeller/test_a/test_a_Points.csv") interp_data = theano_f # Updating the interp data which has theano compiled interp_data.update_interpolator(geo_data) # Compute model sol = gempy.compute_model(interp_data, u_grade=[1]) if False: np.save(os.path.dirname(__file__)+'/test_a_sol.npy', sol) # Load model real_sol = np.load(os.path.dirname(__file__)+'/test_a_sol.npy') # We only compare the block because the absolute pot field I changed it np.testing.assert_array_almost_equal(sol[0][0, :], real_sol[0][0, :], decimal=3) # Checking that the plots do not rise errors gempy.plot_section(geo_data, sol[0][0, :], 25, direction='y', plot_data=True) plt.savefig(os.path.dirname(__file__)+'/figs/test_a.png', dpi=100) gempy.plot_scalar_field(geo_data, sol[0][1, :], 25)
def test_e(self, theano_f_1f): """ Two layers a bit curvy, 1 fault """ # Importing the data from csv files and settign extent and resolution geo_data = gempy.create_data([0, 10, 0, 10, -10, 0], [50, 50, 50], path_o=input_path+"/GeoModeller/test_e/test_e_Foliations.csv", path_i=input_path+"/GeoModeller/test_e/test_e_Points.csv") gempy.set_series(geo_data, {'series': ('A', 'B'), 'fault1': 'f1'}, order_series=['fault1', 'series'], order_formations=['f1','A','B'], verbose=0) interp_data = theano_f_1f # Updating the interp data which has theano compiled interp_data.update_interpolator(geo_data, u_grade=[1, 1]) # Compute model sol = gempy.compute_model(interp_data) if False: np.save(input_path + '/test_e_sol.npy', sol) gempy.plot_section(geo_data, sol[0][0, :], 25, direction='y', plot_data=True) plt.savefig(os.path.dirname(__file__)+'/figs/test_e.png', dpi=200) # Load model real_sol = np.load(input_path + '/test_e_sol.npy') # We only compare the block because the absolute pot field I changed it np.testing.assert_array_almost_equal(np.round(sol[0][0, :]), real_sol[0][0, :], decimal=0)
def test_custom_grid_solution(interpolator_islith_nofault): """ Integration test for a gempy model using a custom grid 2 Horizontal layers with drift 0 :param interpolator_islith_nofault: :return: """ # Importing the data from csv files and settign extent and resolution geo_model = gempy.create_data([0, 10, 0, 10, -10, 0], [10, 10, 10], path_o=input_path + "/GeoModeller/test_a/test_a_Foliations.csv", path_i=input_path + "/GeoModeller/test_a/test_a_Points.csv") # add a custom grid cg = np.array([[5, 5, -9], [5, 5, -5], [5, 5, -5.1], [5, 5, -5.2], [5, 5, -1]]) values = geo_model.set_custom_grid(cg) assert geo_model.grid.active_grids[1] # set the theano function geo_model.set_theano_function(interpolator_islith_nofault) # Compute model sol = gempy.compute_model(geo_model, compute_mesh=False) assert sol.custom.shape == (2,1,5)
def test_set_orientations(): # Importing the data from CSV-files and setting extent and resolution geo_data = gp.create_data( [0, 2000, 0, 2000, 0, 2000], [50, 50, 50], path_o=input_path + '/input_data/tut_chapter1/simple_fault_model_orientations.csv', path_i=input_path + '/input_data/tut_chapter1/simple_fault_model_points.csv') gp.get_data(geo_data) # Assigning series to formations as well as their order (timewise) gp.set_series( geo_data, { "Fault_Series": 'Main_Fault', "Strat_Series": ('Sandstone_2', 'Siltstone', 'Shale', 'Sandstone_1') }, order_series=["Fault_Series", 'Strat_Series'], order_formations=[ 'Main_Fault', 'Sandstone_2', 'Siltstone', 'Shale', 'Sandstone_1', ], verbose=0) gp.set_orientation_from_interfaces(geo_data, [0, 1, 2])
def test_compute_model_multiple_ranges(self, interpolator): # Importing the data from csv files and settign extent and resolution geo_data = gempy.create_data( extent=[0, 2000, 0, 2000, -2000, 0], resolution=[50, 50, 50], path_o=input_path + "/GeoModeller/test_f/test_f_Foliations.csv", path_i=input_path + "/GeoModeller/test_f/test_f_Points.csv") gempy.map_stack_to_surfaces( geo_data, { 'fault1': 'MainFault', 'series': ('Reservoir', 'Seal', 'SecondaryReservoir', 'NonReservoirDeep'), }, ) geo_data.set_theano_function(interpolator) geo_data.set_is_fault('fault1') geo_data.modify_kriging_parameters('range', [3000, 3500, 0]) geo_data._additional_data.kriging_data.set_default_c_o() # Compute model sol = gempy.compute_model(geo_data, sort_surfaces=True) gempy.plot.plot_2d(geo_data, cell_number=25, direction='y', show_data=True) plt.show()
def theano_f(): # Importing the data from csv files and settign extent and resolution geo_data = gempy.create_data([0, 10, 0, 10, -10, 0], [50, 50, 50], path_o=input_path + "/GeoModeller/test_a/test_a_Foliations.csv", path_i=input_path + "/GeoModeller/test_a/test_a_Points.csv") interp_data = gempy.InterpolatorData(geo_data, dtype='float64', compile_theano=True, verbose=[]) return interp_data
def theano_f_1f(self): # Importing the data from csv files and settign extent and resolution geo_data = gempy.create_data([0, 10, 0, 10, -10, 0], [50, 50, 50], path_o=os.path.dirname(__file__)+"/GeoModeller/test_d/test_d_Foliations.csv", path_i=os.path.dirname(__file__)+"/GeoModeller/test_d/test_d_Points.csv") gempy.set_series(geo_data, {'series': ('A', 'B'), 'fault1': 'f1'}, order_series=['fault1', 'series']) interp_data = gempy.InterpolatorData(geo_data, dtype='float64', compile_theano=True) return interp_data
def test_ch2(theano_f): # Importing the data from csv files and settign extent and resolution geo_data = gp.create_data([696000,747000,6863000,6930000,-20000, 200], [50, 50, 50], path_o=input_path+"/input_data/tut_SandStone/SandStone_Foliations.csv", path_i=input_path+"/input_data/tut_SandStone/SandStone_Points.csv") gp.plotting.plot_data(geo_data, direction='z') # Assigning series to formations as well as their order (timewise) gp.set_series(geo_data, {"EarlyGranite_Series": 'EarlyGranite', "BIF_Series":('SimpleMafic2', 'SimpleBIF'), "SimpleMafic_Series":'SimpleMafic1'}, order_series = ["EarlyGranite_Series", "BIF_Series", "SimpleMafic_Series"], order_formations= ['EarlyGranite', 'SimpleMafic2', 'SimpleBIF', 'SimpleMafic1'], verbose=1) # interp_data = gp.InterpolatorData(geo_data, theano_optimizer='fast_run', # compile_theano=True, verbose=[]) interp_data = theano_f interp_data.update_interpolator(geo_data) lith_block, fault_block = gp.compute_model(interp_data) import matplotlib.pyplot as plt gp.plot_section(geo_data, lith_block[0], -2, plot_data=True, direction='z') fig = plt.gcf() fig.set_size_inches(18.5, 10.5) gp.plot_section(geo_data, lith_block[0],25, plot_data=True, direction='x') fig = plt.gcf() fig.set_size_inches(18.5, 10.5) # In[14]: gp.plot_scalar_field(geo_data, lith_block[1], 11, cmap='viridis', N=100) import matplotlib.pyplot as plt plt.colorbar(orientation='horizontal') vertices, simplices = gp.get_surfaces(interp_data, lith_block[1], None, original_scale=False) pyevtk = pytest.importorskip("pyevtk") gp.export_to_vtk(geo_data, path=os.path.dirname(__file__)+'/vtk_files', lith_block=lith_block[0], vertices=vertices, simplices=simplices)
def theano_f(self): # Importing the data from csv files and settign extent and resolution geo_data = gempy.create_data([0, 10, 0, 10, -10, 0], [50, 50, 50], path_o=os.path.dirname(__file__)+"/GeoModeller/test_a/test_a_Foliations.csv", path_i=os.path.dirname(__file__)+"/GeoModeller/test_a/test_a_Points.csv") interp_data = gempy.InterpolatorData(geo_data, dtype='float64', u_grade=[1], compile_theano=True, verbose=['cov_gradients', 'cov_interfaces', 'solve_kriging', 'sed_dips_dips', 'slices']) return interp_data
def test_f(self, theano_f_1f): """ Two layers a bit curvy, 1 fault. Checked with geomodeller """ # Importing the data from csv files and settign extent and resolution geo_data = gempy.create_data( [0, 2000, 0, 2000, -2000, 0], [50, 50, 50], path_o=input_path + "/GeoModeller/test_f/test_f_Foliations.csv", path_i=input_path + "/GeoModeller/test_f/test_f_Points.csv") gempy.set_series(geo_data, { 'series': ('Reservoir', 'Seal', 'SecondaryReservoir', 'NonReservoirDeep'), 'fault1': 'MainFault' }, order_series=['fault1', 'series'], order_formations=[ 'MainFault', 'SecondaryReservoir', 'Seal', 'Reservoir', 'NonReservoirDeep' ], verbose=0) interp_data = theano_f_1f # Updating the interp data which has theano compiled interp_data.update_interpolator(geo_data, u_grade=[1, 1]) # Compute model sol = gempy.compute_model(interp_data) if False: np.save(input_path + '/test_f_sol.npy', sol) real_sol = np.load(input_path + '/test_f_sol.npy') gempy.plot_section(geo_data, sol[0][0, :], 25, direction='y', plot_data=True) plt.savefig(os.path.dirname(__file__) + '/figs/test_f.png', dpi=200) # We only compare the block because the absolute pot field I changed it np.testing.assert_array_almost_equal(np.round(sol[0][0, :]), real_sol[0][0, :], decimal=0) ver, sim = gempy.get_surfaces(interp_data, sol[0][1], sol[1][1], original_scale=True)
def test_find_interfaces(): block = np.load(input_path+'/noddy_block.npy') bool_block = im.find_interfaces_from_block(block, 1) geo_data = gp.create_data(extent=[0, 6000, 0, 6000, 0, 500], resolution=[60, 60 ,6]) p_df = im.interfaces_from_interfaces_block(bool_block, geo_data._grid.values) im.set_interfaces_from_block(geo_data, block)
def theano_f_grav(): # Importing the data from csv files and settign extent and resolution geo_data = gempy.create_data([0, 10, 0, 10, -10, 0], [50, 50, 50], path_o=input_path + "/GeoModeller/test_a/test_a_Foliations.csv", path_i=input_path + "/GeoModeller/test_a/test_a_Points.csv") gempy.set_series(geo_data, {'series': ('A', 'B'), 'fault1': 'f1'}, order_series=['fault1', 'series']) interp_data = gempy.InterpolatorData(geo_data, dtype='float64', compile_theano=True, output='gravity', verbose=[]) return interp_data
def theano_f(): # Importing the data from csv files and settign extent and resolution geo_data = gempy.create_data( [0, 10, 0, 10, -10, 0], [50, 50, 50], path_o=input_path + "/GeoModeller/test_a/test_a_Foliations.csv", path_i=input_path + "/GeoModeller/test_a/test_a_Points.csv") interp_data = gempy.InterpolatorData(geo_data, dtype='float64', compile_theano=True, verbose=[]) return interp_data
def test_set_section_twice(self): geo_data = gp.create_data(extent=[0, 1000, 0, 1000, 0, 1000], resolution=[10, 10, 10]) section_dict = { 'section1': ([0, 0], [1000, 1000], [100, 80]), 'section2': ([800, 0], [800, 1000], [150, 100]), 'section3': ([50, 200], [100, 500], [200, 150]) } geo_data.set_section_grid(section_dict) geo_data.set_section_grid(section_dict) print(geo_data._grid.sections)
def create_gempy_model(resolution=[20, 20, 20], type=2): if type == 1: data_path = 'https://raw.githubusercontent.com/cgre-aachen/gempy_data/master/' path_to_data = data_path + "/data/input_data/jan_models/" geo_data = gp.create_data( 'fold', extent=[0, 1000, 0, 1000, 0, 1000], resolution=resolution, path_o=path_to_data + "model2_orientations.csv", path_i=path_to_data + "model2_surface_points.csv") gp.map_stack_to_surfaces(geo_data, { "Strat_Series": ('rock2', 'rock1'), "Basement_Series": ('basement') }) interp_data = gp.set_interpolator(geo_data, theano_optimizer='fast_compile') sol = gp.compute_model(geo_data) elif type == 2: data_path = 'https://raw.githubusercontent.com/cgre-aachen/gempy_data/master/' path_to_data = data_path + "/data/input_data/jan_models/" geo_data = gp.create_data( 'unconformity', extent=[0, 1000, 0, 1000, 0, 1000], resolution=[50, 50, 50], path_o=path_to_data + "model6_orientations.csv", path_i=path_to_data + "model6_surface_points.csv") gp.map_stack_to_surfaces( geo_data, { "Strat_Series1": ('rock3'), "Strat_Series2": ('rock2', 'rock1'), "Basement_Series": ('basement') }) interp_data = gp.set_interpolator(geo_data, theano_optimizer='fast_compile') sol = gp.compute_model(geo_data) return geo_data
def one_fault_model_no_interp(): """This only makes sense for running small test fast""" model = gp.create_data('one_fault_model', [0, 2000, 0, 2000, 0, 2000], [50, 50, 50], path_o=input_path2 + 'tut_chapter1/simple_fault_model_orientations.csv', path_i=input_path2 + 'tut_chapter1/simple_fault_model_points.csv') # Assigning series to surface as well as their order (timewise) gp.map_stack_to_surfaces(model, {"Fault_Series": 'Main_Fault', "Strat_Series": ('Sandstone_2', 'Siltstone', 'Shale', 'Sandstone_1')}, ) model.set_is_fault(['Fault_Series']) return model
def geo_model(self, interpolator_islith_nofault): """ 2 Horizontal layers with drift 0 """ # Importing the data from csv files and settign extent and resolution geo_data = gempy.create_data([0, 10, 0, 10, -10, 0], [50, 50, 50], path_o=input_path + "/GeoModeller/test_a/test_a_Foliations.csv", path_i=input_path + "/GeoModeller/test_a/test_a_Points.csv") geo_data.set_theano_function(interpolator_islith_nofault) # Compute model sol = gempy.compute_model(geo_data, compute_mesh_options={'rescale': True}) return geo_data
def test_section_grid(self): geo_data = gp.create_data([0, 1000, 0, 1000, 0, 1000], resolution=[10, 10, 10]) geo_data.set_topography() section_dict = { 'section1': ([0, 0], [1000, 1000], [100, 80]), 'section2': ([800, 0], [800, 1000], [150, 100]), 'section3': ([50, 200], [100, 500], [200, 150]) } geo_data.set_section_grid(section_dict) print(geo_data.grid.sections) np.testing.assert_almost_equal( geo_data.grid.sections.df.loc['section3', 'dist'], 304.138127, decimal=4)
def test_rescaled_marching_cube(interpolator): """ 2 Horizontal layers with drift 0 """ # Importing the data from csv files and setting extent and resolution geo_data = gempy.create_data( 'Simple interpolator', [0, 10, 0, 10, -10, 0], [50, 50, 50], path_o=input_path + "/GeoModeller/test_a/test_a_Foliations.csv", path_i=input_path + "/GeoModeller/test_a/test_a_Points.csv") geo_data.set_theano_function(interpolator) # Compute model sol = gempy.compute_model(geo_data, compute_mesh_options={'rescale': True}) print(sol.vertices) return geo_data
def test_simple_model_gempy_engine(): import numpy numpy.set_printoptions(precision=3, linewidth=200) g = gempy.create_data("test_engine", extent=[-4, 4, -4, 4, -4, 4], resolution=[4, 1, 4]) sp = np.array([[-3, 0, 0], [0, 0, 0], [2, 0, 0.5], [2.5, 0, 1.2], [3, 0, 2], [1, 0, .2], [2.8, 0, 1.5]]) g.set_default_surfaces() for i in sp: g.add_surface_points(*i, surface="surface1") g.add_orientations(-3, 0, 2, pole_vector=(0, 0, 1), surface="surface1") g.add_orientations(2, 0, 3, pole_vector=(-.2, 0, .8), surface="surface1") g.modify_orientations([0, 1], smooth=0.000000000001) g.modify_surface_points(g._surface_points.df.index, smooth=0.0000000001) gempy.set_interpolator(g, verbose=[ "n_surface_op_float_sigmoid", "scalar_field_iter", "compare", "sigma" ]) g.modify_kriging_parameters("range", 50) # g.modify_kriging_parameters("$C_o$", 5 ** 2 / 14 / 3) g.modify_kriging_parameters("drift equations", [0]) import theano dtype = "float32" g._interpolator.theano_graph.i_reescale.set_value(np.cast[dtype](1.)) g._interpolator.theano_graph.gi_reescale.set_value(np.cast[dtype](1.)) gempy.compute_model(g) print(g.additional_data) print(g.solutions.scalar_field_matrix) gempy.plot_2d(g) print(g.grid.values) print(g.solutions.weights_vector)
def test_ch6(theano_f_1f): # initialize geo_data object geo_data = gp.create_data([0, 3000, 0, 20, 0, 2000], resolution=[50, 3, 67]) # import data points geo_data.import_data_csv( input_path + "/input_data/tut_chapter6/ch6_data_interf.csv", input_path + "/input_data/tut_chapter6/ch6_data_fol.csv") gp.set_series( geo_data, { "fault": geo_data.get_formations()[np.where( geo_data.get_formations() == "Fault")[0][0]], "Rest": np.delete(geo_data.get_formations(), np.where(geo_data.get_formations() == "Fault")[0][0]) }, order_series=["fault", "Rest"], verbose=0, order_formations=['Fault', 'Layer 2', 'Layer 3', 'Layer 4', 'Layer 5']) gp.plot_data(geo_data) plt.xlim(0, 3000) plt.ylim(0, 2000) interp_data = gp.InterpolatorData(geo_data, u_grade=[0, 1]) lith_block, fault_block = gp.compute_model(interp_data) gp.plot_section(geo_data, lith_block[0], 0) G, centroids, labels_unique, lith_to_labels_lot, labels_to_lith_lot = gp.topology_compute( geo_data, lith_block[0], fault_block) gp.plot_section(geo_data, lith_block[0], 0, direction='y') gp.plot_topology(geo_data, G, centroids) lith_to_labels_lot["4"].keys() gp.topology.check_adjacency(G, 8, 3) G.adj[8] G.adj[8][2]["edge_type"]
def unconformity_model(interpolator): geo_model = gp.create_data( 'unconformity_model', [0, 1000, 0, 1000, 0, 1000], resolution=[50, 42, 33], path_o=input_path2 + "jan_models/model6_orientations.csv", path_i=input_path2 + "jan_models/model6_surface_points.csv") gp.map_stack_to_surfaces( geo_model, { "Strat_Series1": ('rock3'), "Strat_Series2": ('rock2', 'rock1'), "Basement_Series": ('basement') }) # with open("input_data/geomodel_jan_sol.p", "rb") as f: # geo_model.solutions = load(f) geo_model.set_theano_function(interpolator) gp.compute_model(geo_model) return geo_model
def test_f_sort_surfaces(self, interpolator): """ Two layers a bit curvy, 1 fault. Checked with geomodeller """ # Importing the data from csv files and settign extent and resolution geo_data = gempy.create_data( [0, 2000, 0, 2000, -2000, 0], [50, 50, 50], path_o=input_path + "/GeoModeller/test_f/test_f_Foliations.csv", path_i=input_path + "/GeoModeller/test_f/test_f_Points.csv") gempy.set_series( geo_data, { 'fault1': 'MainFault', 'series': ('Reservoir', 'Seal', 'SecondaryReservoir', 'NonReservoirDeep'), }, ) geo_data.set_theano_function(interpolator) geo_data.set_is_fault('fault1') # Compute model sol = gempy.compute_model(geo_data, sort_surfaces=True) if update_sol: np.save(input_path + '/test_f_sol.npy', sol.lith_block[test_values]) real_sol = np.load(input_path + '/test_f_sol.npy') gempy.plot.plot_section(geo_data, 25, direction='y', show_data=True) plt.savefig(os.path.dirname(__file__) + '/../figs/test_f.png', dpi=200) # We only compare the block because the absolute pot field I changed it np.testing.assert_array_almost_equal(np.round( sol.lith_block[test_values]), real_sol, decimal=0) ver, sim = gempy.get_surfaces(geo_data) print(ver, sim)
def geo_model(self): model = gp.create_data( [0, 2000, 0, 2000, 0, 2000], [50, 50, 50], path_o=input_path + '/input_data/tut_chapter1/simple_fault_model_orientations.csv', path_i=input_path + '/input_data/tut_chapter1/simple_fault_model_points.csv') # Assigning series to surface as well as their order (timewise) gp.set_series( model, { "Fault_Series": 'Main_Fault', "Strat_Series": ('Sandstone_2', 'Siltstone', 'Shale', 'Sandstone_1') }, ) return model
def theano_f_grav(): # Importing the data from csv files and settign extent and resolution geo_data = gempy.create_data( [0, 10, 0, 10, -10, 0], [50, 50, 50], path_o=input_path + "/GeoModeller/test_a/test_a_Foliations.csv", path_i=input_path + "/GeoModeller/test_a/test_a_Points.csv") gempy.set_series(geo_data, { 'series': ('A', 'B'), 'fault1': 'f1' }, order_series=['fault1', 'series']) interp_data = gempy.InterpolatorData(geo_data, dtype='float64', compile_theano=True, output='gravity', verbose=[]) return interp_data
def test_f(self, theano_f_1f): """ Two layers a bit curvy, 1 fault. Checked with geomodeller """ # Importing the data from csv files and settign extent and resolution geo_data = gempy.create_data([0, 2000, 0, 2000, -2000, 0], [50, 50, 50], path_o=input_path+"/GeoModeller/test_f/test_f_Foliations.csv", path_i=input_path+"/GeoModeller/test_f/test_f_Points.csv") gempy.set_series(geo_data, {'series': ('Reservoir', 'Seal', 'SecondaryReservoir', 'NonReservoirDeep' ), 'fault1': 'MainFault'}, order_series=['fault1', 'series'], order_formations=['MainFault', 'SecondaryReservoir', 'Seal', 'Reservoir', 'NonReservoirDeep'], verbose=0) interp_data = theano_f_1f # Updating the interp data which has theano compiled interp_data.update_interpolator(geo_data, u_grade=[1, 1]) # Compute model sol = gempy.compute_model(interp_data) if False: np.save(input_path + '/test_f_sol.npy', sol) real_sol = np.load(input_path + '/test_f_sol.npy') gempy.plot_section(geo_data, sol[0][0, :], 25, direction='y', plot_data=True) plt.savefig(os.path.dirname(__file__)+'/figs/test_f.png', dpi=200) # We only compare the block because the absolute pot field I changed it np.testing.assert_array_almost_equal(np.round(sol[0][0, :]), real_sol[0][0, :], decimal=0) ver, sim = gempy.get_surfaces(interp_data, sol[0][1], sol[1][1], original_scale=True)
def topology_jan_unconf(): geo_model = gp.create_data( [0, 1000, 0, 1000, 0, 1000], resolution=[50, 50, 50], path_o=data_path / "jan_models/model6_orientations.csv", path_i=data_path / "jan_models/model6_surface_points.csv") gp.map_series_to_surfaces( geo_model, { "Strat_Series1": ('rock3'), "Strat_Series2": ('rock2', 'rock1'), "Basement_Series": ('basement') }) # with open("input_data/geomodel_jan_sol.p", "rb") as f: # geo_model.solutions = load(f) gp.set_interpolator(geo_model) gp.compute_model(geo_model) edges, centroids = tp.compute_topology(geo_model, voxel_threshold=1) return edges, centroids
def test_ch6(theano_f_1f): # initialize geo_data object geo_data = gp.create_data([0, 3000, 0, 20, 0, 2000], resolution=[50, 3, 67]) # import data points geo_data.import_data_csv(input_path+"/input_data/tut_chapter6/ch6_data_interf.csv", input_path+"/input_data/tut_chapter6/ch6_data_fol.csv") gp.set_series(geo_data, {"fault":geo_data.get_formations()[np.where(geo_data.get_formations()=="Fault")[0][0]], "Rest":np.delete(geo_data.get_formations(), np.where(geo_data.get_formations()=="Fault")[0][0])}, order_series = ["fault", "Rest"], verbose=0, order_formations=['Fault','Layer 2', 'Layer 3', 'Layer 4', 'Layer 5']) gp.plot_data(geo_data) plt.xlim(0,3000) plt.ylim(0,2000); interp_data = gp.InterpolatorData(geo_data, u_grade=[0,1]) lith_block, fault_block = gp.compute_model(interp_data) gp.plot_section(geo_data, lith_block[0], 0) G, centroids, labels_unique, lith_to_labels_lot, labels_to_lith_lot = gp.topology_compute( geo_data, lith_block[0], fault_block) gp.plot_section(geo_data, lith_block[0], 0, direction='y') gp.plot_topology(geo_data, G, centroids) lith_to_labels_lot["4"].keys() gp.topology.check_adjacency(G, 8, 3) G.adj[8] G.adj[8][2]["edge_type"]
def test_ch1(theano_f_1f): # Importing the data from CSV-files and setting extent and resolution geo_data = gp.create_data([0, 2000, 0, 2000, 0, 2000], [50, 50, 50], path_o=input_path+'/input_data/tut_chapter1/simple_fault_model_orientations.csv', path_i=input_path+'/input_data/tut_chapter1/simple_fault_model_points.csv') gp.get_data(geo_data) # Assigning series to formations as well as their order (timewise) gp.set_series(geo_data, {"Fault_Series":'Main_Fault', "Strat_Series": ('Sandstone_2','Siltstone', 'Shale', 'Sandstone_1')}, order_series = ["Fault_Series", 'Strat_Series'], order_formations=['Main_Fault', 'Sandstone_2','Siltstone', 'Shale', 'Sandstone_1', ], verbose=0) gp.get_sequential_pile(geo_data) print(gp.get_grid(geo_data)) gp.get_data(geo_data, 'interfaces').head() gp.get_data(geo_data, 'orientations') gp.plot_data(geo_data, direction='y') # interp_data = gp.InterpolatorData(geo_data, u_grade=[1,1], # output='geology', compile_theano=True, # theano_optimizer='fast_compile', # verbose=[]) interp_data = theano_f_1f interp_data.update_interpolator(geo_data) gp.get_kriging_parameters(interp_data) # Maybe move this to an extra part? lith_block, fault_block = gp.compute_model(interp_data) gp.plot_section(geo_data, lith_block[0], cell_number=25, direction='y', plot_data=True) gp.plot_scalar_field(geo_data, lith_block[1], cell_number=25, N=15, direction='y', plot_data=False) gp.plot_scalar_field(geo_data, lith_block[1], cell_number=25, N=15, direction='z', plot_data=False) gp.plot_section(geo_data, fault_block[0], cell_number=25, plot_data=True, direction='y') gp.plot_scalar_field(geo_data, fault_block[1], cell_number=25, N=20, direction='y', plot_data=False) ver, sim = gp.get_surfaces(interp_data,lith_block[1], fault_block[1], original_scale=True) # Cropping a cross-section to visualize in 2D #REDO this part? bool_b = np.array(ver[1][:,1] > 999)* np.array(ver[1][:,1] < 1001) bool_r = np.array(ver[1][:,1] > 1039)* np.array(ver[1][:,1] < 1041) # Plotting section gp.plot_section(geo_data, lith_block[0], 25, plot_data=True) ax = plt.gca() # Adding grid ax.set_xticks(np.linspace(0, 2000, 100, endpoint=False)) ax.set_yticks(np.linspace(0, 2000, 100, endpoint=False)) plt.grid() plt.ylim(1000,1600) plt.xlim(500,1100) # Plotting vertices ax.plot(ver[1][bool_r][:, 0], ver[1][bool_r][:, 2], '.', color='b', alpha=.9) ax.get_xaxis().set_ticklabels([]) ver_s, sim_s = gp.get_surfaces(interp_data,lith_block[1], fault_block[1], original_scale=True)
import importlib from operator import itemgetter from mpl_toolkits.mplot3d import Axes3D import vtk import evtk from scipy.interpolate import griddata import decision_making as dm # Importing the data from csv files and setting extent and resolution geo_data = gp.create_data([0,2000,0,2000,0,2000],[50,50,50], path_o = "./reservoir_model_orientations.csv", path_i = "./reservoir_model_interfaces.csv") geo_data.n_faults = 1 gp.set_series(geo_data, {"fault":'MainFault', "Rest":('Base_Top', 'Res_Top', 'Seal_Top', 'SecRes_Top')}, order_series = ["fault","Rest",], order_formations=['MainFault', 'SecRes_Top', 'Seal_Top', 'Res_Top','Base_Top', ]) # DECLARING SOME MODEL VARIABLES resolution = geo_data.resolution[1] #resolution, standard: 50 model_size = geo_data.extent[:2][1] # 'real' model extent, here: 2000 m - cubic (what if not cubic?) scale_factor = (model_size/resolution) # scale factor used for calculating voxel volumes in [m] # here: 2000/50 = 40 #rescale_f = interp_data.rescaling_factor # rescaling factor from geo_data to interp_data
def test_ch3_a(theano_f): # set cube size and model extent cs = 50 extent = (3000, 200, 2000) # (x, y, z) res = (120, 4, 80) # initialize geo_data object geo_data = gp.create_data([0, extent[0], 0, extent[1], 0, extent[2]], resolution=[res[0], # number of voxels res[1], res[2]]) geo_data.set_interfaces(pn.read_csv(input_path+"/input_data/tut_chapter3/tutorial_ch3_interfaces", index_col="Unnamed: 0"), append=True) geo_data.set_orientations(pn.read_csv(input_path+"/input_data/tut_chapter3/tutorial_ch3_foliations", index_col="Unnamed: 0")) # let's have a look at the upper five interface data entries in the dataframe gp.get_data(geo_data, 'interfaces', verbosity=1).head() # Original pile gp.get_sequential_pile(geo_data) # Ordered pile gp.set_order_formations(geo_data, ['Layer 2', 'Layer 3', 'Layer 4','Layer 5']) gp.get_sequential_pile(geo_data) # and at all of the foliation data gp.get_data(geo_data, 'orientations', verbosity=0) gp.plot_data(geo_data, direction="y") plt.xlim(0,3000) plt.ylim(0,2000); gp.data_to_pickle(geo_data, os.path.dirname(__file__)+"/ch3-pymc2_tutorial_geo_data") #interp_data = gp.InterpolatorData(geo_data, u_grade=[1], compile_theano=True) interp_data = theano_f interp_data.update_interpolator(geo_data) # Afterwards we can compute the geological model lith_block, fault_block = gp.compute_model(interp_data) # And plot a section: gp.plot_section(geo_data, lith_block[0], 2, plot_data = True) import pymc # Checkpoint in case you did not execute the cells above geo_data = gp.read_pickle(os.path.dirname(__file__)+"/ch3-pymc2_tutorial_geo_data.pickle") gp.get_data(geo_data, 'orientations', verbosity=1).head() # So let's assume the vertical location of our layer interfaces is uncertain, and we want to represent this # uncertainty by using a normal distribution. To define a normal distribution, we need a mean and a measure # of deviation (e.g. standard deviation). For convenience the input data is already grouped by a "group_id" value, # which allows us to collectively modify data that belongs together. In this example we want to treat the vertical # position of each layer interface, on each side of the anticline, as uncertain. Therefore, we want to perturbate # the respective three points on each side of the anticline collectively. # These are our unique group id's, the number representing the layer, and a/b the side of the anticline. group_ids = geo_data.interfaces["group_id"].dropna().unique() print(group_ids) # As a reminder, GemPy stores data in two main objects, an InputData object (called geo_data in the tutorials) and # a InpterpolatorInput object (interp_data) in tutorials. geo_data contains the original data while interp_data the # data prepared (and compiled) to compute the 3D model. # # Since we do not want to compile our code at every new stochastic realization, from here on we will need to work # with thte interp_data. And remember that to improve float32 to stability we need to work with rescaled data # (between 0 and 1). Therefore all the stochastic data needs to be rescaled accordingly. The object interp_data # contains a property with the rescale factor (see below. As default depends on the model extent), or it is # possible to add the stochastic data to the pandas dataframe of the geo_data---when the InterpolatorInput object # is created the rescaling happens under the hood. interface_Z_modifier = [] # We rescale the standard deviation std = 20./interp_data.rescaling_factor # loop over the unique group id's and create a pymc.Normal distribution for each for gID in group_ids: stoch = pymc.Normal(gID+'_stoch', 0, 1./std**2) interface_Z_modifier.append(stoch) # Let's have a look at one: # sample from a distribtion samples = [interface_Z_modifier[3].rand() for i in range(10000)] # plot histogram plt.hist(samples, bins=24, normed=True); plt.xlabel("Z modifier") plt.vlines(0, 0, 0.01) plt.ylabel("n"); # Now we need to somehow sample from these distribution and put them into GemPy # ## Input data handling # # First we need to write a function which modifies the input data for each iteration of the stochastic simulation. # As this process is highly dependant on the simulation (e.g. what input parameters you want modified in which way), # this process generally can't be automated. # # The idea is to change the column Z (in this case) of the rescaled dataframes in our interp_data object (which can # be found in interp_data.geo_data_res). First we simply create the pandas Dataframes we are interested on: import copy # First we extract from our original intep_data object the numerical data that is necessary for the interpolation. # geo_data_stoch is a pandas Dataframe # This is the inital model so it has to be outside the stochastic frame geo_data_stoch_init = copy.deepcopy(interp_data.geo_data_res) gp.get_data(geo_data_stoch_init, numeric=True).head() @pymc.deterministic(trace=True) def input_data(value = 0, interface_Z_modifier = interface_Z_modifier, geo_data_stoch_init = geo_data_stoch_init, verbose=0): # First we extract from our original intep_data object the numerical data that is necessary for the interpolation. # geo_data_stoch is a pandas Dataframe geo_data_stoch = gp.get_data(geo_data_stoch_init, numeric=True) # Now we loop each id which share the same uncertainty variable. In this case, each layer. for e, gID in enumerate(group_ids): # First we obtain a boolean array with trues where the id coincide sel = gp.get_data(interp_data.geo_data_res, verbosity=2)['group_id'] == gID # We add to the original Z value (its mean) the stochastic bit in the correspondant groups id geo_data_stoch.loc[sel, 'Z'] += np.array(interface_Z_modifier[e]) if verbose > 0: print(geo_data_stoch) # then return the input data to be input into the modeling function. Due to the way pymc2 stores the traces # We need to save the data as numpy arrays return [geo_data_stoch.xs('interfaces')[["X", "Y", "Z"]].values, geo_data_stoch.xs('orientations').values] # ## Modeling function @pymc.deterministic(trace=False) def gempy_model(value=0, input_data=input_data, verbose=True): # modify input data values accordingly interp_data.geo_data_res.interfaces[["X", "Y", "Z"]] = input_data[0] # Gx, Gy, Gz are just used for visualization. The theano function gets azimuth dip and polarity!!! interp_data.geo_data_res.orientations[["G_x", "G_y", "G_z", "X", "Y", "Z", 'dip', 'azimuth', 'polarity']] = input_data[1] try: # try to compute model lb, fb = gp.compute_model(interp_data) if True: gp.plot_section(interp_data.geo_data_res, lb[0], 0, plot_data=True) return lb, fb except np.linalg.linalg.LinAlgError as err: # if it fails (e.g. some input data combinations could lead to # a singular matrix and thus break the chain) return an empty model # with same dimensions (just zeros) if verbose: print("Exception occured.") return np.zeros_like(lith_block), np.zeros_like(fault_block) # We then create a pymc model with the two deterministic functions (*input_data* and *gempy_model*), as well as all # the prior parameter distributions stored in the list *interface_Z_modifier*: params = [input_data, gempy_model, *interface_Z_modifier] model = pymc.Model(params) # Then we set the number of iterations: # Then we create an MCMC chain (in pymc an MCMC chain without a likelihood function is essentially a Monte Carlo # forward simulation) and specify an hdf5 database to store the results in RUN = pymc.MCMC(model, db="hdf5", dbname=os.path.dirname(__file__)+"/ch3-pymc2.hdf5") # and we are finally able to run the simulation: RUN.sample(iter=100, verbose=0)
def test_ch5(theano_f_grav, theano_f): # Importing the data from csv files and settign extent and resolution geo_data = gp.create_data([696000,747000,6863000,6950000,-20000, 200],[50, 50, 50], path_o = input_path+"/input_data/tut_SandStone/SandStone_Foliations.csv", path_i = input_path+"/input_data/tut_SandStone/SandStone_Points.csv") # Assigning series to formations as well as their order (timewise) gp.set_series(geo_data, {"EarlyGranite_Series": 'EarlyGranite', "BIF_Series":('SimpleMafic2', 'SimpleBIF'), "SimpleMafic_Series":'SimpleMafic1'}, order_series = ["EarlyGranite_Series", "BIF_Series", "SimpleMafic_Series"], order_formations= ['EarlyGranite', 'SimpleMafic2', 'SimpleBIF', 'SimpleMafic1'], verbose=1) gp.plot_data(geo_data) #interp_data = gp.InterpolatorData(geo_data, compile_theano=True) interp_data = theano_f interp_data.update_interpolator(geo_data) lith_block, fault_block = gp.compute_model(interp_data) import matplotlib.pyplot as plt gp.plot_section(geo_data, lith_block[0], 10, plot_data=True, direction='y') fig = plt.gcf() fig.set_size_inches(18.5, 10.5) from matplotlib.patches import Rectangle currentAxis = plt.gca() currentAxis.add_patch(Rectangle((7.050000e+05, 6863000), 747000 - 7.050000e+05, 6925000 - 6863000, alpha=0.3, fill='none', color ='green' )) ver_s, sim_s = gp.get_surfaces(interp_data, lith_block[1], None, original_scale=True) # gp.plot_surfaces_3D_real_time(interp_data, ver_s, sim_s) # Importing the data from csv files and settign extent and resolution geo_data_extended = gp.create_data([696000-10000, 747000 + 20600, 6863000 - 20600,6950000 + 20600, -20000, 600], [50, 50, 50], path_o=input_path + "/input_data/tut_SandStone/SandStone_Foliations.csv", path_i=input_path + "/input_data/tut_SandStone/SandStone_Points.csv") # Assigning series to formations as well as their order (timewise) gp.set_series(geo_data_extended, {"EarlyGranite_Series": 'EarlyGranite', "BIF_Series":('SimpleMafic2', 'SimpleBIF'), "SimpleMafic_Series":'SimpleMafic1'}, order_series = ["EarlyGranite_Series", "BIF_Series", "SimpleMafic_Series"], order_formations= ['EarlyGranite', 'SimpleMafic2', 'SimpleBIF', 'SimpleMafic1'], verbose=1) # interp_data_extended = gp.InterpolatorData(geo_data_extended, output='geology', # compile_theano=True) interp_data_extended = interp_data interp_data_extended.update_interpolator(geo_data_extended) geo_data_extended.set_formations(formation_values=[2.61,2.92,3.1,2.92,2.61], formation_order=['EarlyGranite', 'SimpleMafic2', 'SimpleBIF', 'SimpleMafic1', 'basement']) lith_ext, fautl = gp.compute_model(interp_data_extended) import matplotlib.pyplot as plt gp.plot_section(geo_data_extended, lith_ext[0], -1, plot_data=True, direction='z') fig = plt.gcf() fig.set_size_inches(18.5, 10.5) from matplotlib.patches import Rectangle currentAxis = plt.gca() currentAxis.add_patch(Rectangle((7.050000e+05, 6863000), 747000 - 7.050000e+05, 6925000 - 6863000, alpha=0.3, fill='none', color ='green' )) interp_data_grav = theano_f_grav interp_data_grav.update_interpolator(geo_data_extended) gp.set_geophysics_obj(interp_data_grav, [7.050000e+05,747000,6863000,6925000,-20000, 200], [10, 10],) gp.precomputations_gravity(interp_data_grav, 10) lith, fault, grav = gp.compute_model(interp_data_grav, 'gravity') import matplotlib.pyplot as plt plt.imshow(grav.reshape(10, 10), cmap='viridis', origin='lower', extent=[7.050000e+05,747000,6863000,6950000] ) plt.colorbar()