Ejemplo n.º 1
0
    def _retina_detach(self, out):
        ''' ##### Author [email protected]
        Solving bounding boxes.

        Parameters
        ----------
        out: map object of staggered scores and deltas.
            scores, deltas = next(out), next(out)

            Each scores has shape [N, A*4, H, W].
            Each deltas has shape [N, A*4, H, W].

            N is the batch size.
            A is the shape[0] of base anchors declared in the fpn dict.
            H, W is the heights and widths of the anchors grid,
            based on the stride and input image's height and width.

        Returns
        -------
        Generator of list, each list has [boxes, scores].

        Usage
        -----
        >>> np.block(list(self._retina_solving(out)))
        '''

        buffer, anchors = out[0].asnumpy(), out[1]
        mask = buffer[:, 4] > self.threshold
        deltas = buffer[mask]
        nonlinear_pred(anchors[mask], deltas)
        deltas[:, :4] /= self.scale
        return deltas
Ejemplo n.º 2
0
        def deal_with_fpn(fpn, scores, deltas):
            anchors = self._anchors_plane(*deltas.shape[-2:], *fpn).reshape(
                (-1, 4))

            scores = scores[:, fpn[1].shape[0]:, :, :].transpose(
                (0, 2, 3, 1)).reshape((-1, 1))
            deltas = deltas.transpose((0, 2, 3, 1)).reshape((-1, 4))

            mask = scores.reshape((-1, )) > self.threshold
            proposals = deltas[mask]

            nonlinear_pred(anchors[mask], proposals)

            return [proposals / scale, scores[mask]]
Ejemplo n.º 3
0
    def _retina_solving(self, out):
        ''' ##### Author [email protected]
        Solving bounding boxes.

        Parameters
        ----------
        out: map object of staggered scores and deltas.
            scores, deltas = next(out), next(out)

            Each scores has shape [N, A*4, H, W].
            Each deltas has shape [N, A*4, H, W].

            N is the batch size.
            A is the shape[0] of base anchors declared in the fpn dict.
            H, W is the heights and widths of the anchors grid, 
            based on the stride and input image's height and width.

        Returns
        -------
        Generator of list, each list has [boxes, scores].

        Usage
        -----
        >>> np.block(list(self._retina_solving(out)))
        '''

        for fpn in self._fpn_anchors:
            scores, deltas = next(out)[:, fpn[1].shape[0]:, ...], next(out)

            scores = scores.transpose((0, 2, 3, 1)).reshape((-1, 1))
            mask = scores.ravel() > self.threshold

            anchors = self._get_runtime_anchors(*deltas.shape[-2:], *fpn)[mask]
            deltas = deltas.transpose((0, 2, 3, 1)).reshape((-1, 4))[mask]

            nonlinear_pred(anchors, deltas)

            yield [deltas / self.scale, scores[mask]]