Ejemplo n.º 1
0
    "K3pep": np.array([.1]),
    "K2pep": np.array([.3]),
    "vemax": np.array([1.1]),
    "Kefdp": np.array([.45]),
    "ne": np.array([2]),
    "d": np.array([.25]),
    "V4max": np.array([.2]),
    "k1cat": np.array([1]),
    "V3max": np.array([1]),
    "V2max": np.array([1]),
    "ac": np.array([.1])
}

# get experimental system steady state data without noise
exp_xss, exp_fss, exp_ssid, perturbation_details = \
    generate_expdata(y0, cvode_options, ode_parameter_values, noise=1, number_of_samples=5, kinetics=1,
                     dynamic_plot=1, perturbation_plot=0)

# arrange experimental data to form multiple data sets
exp_flux_index = np.array([0, 3, 2, 4, 1, 5])

# get combination of 3 experiments and perform identifiability on all fluxes that require 3 data sets
print(
    'Practical Identifiability Analysis of v3 with 3 parameters: V3max, K3fdp and K3pep \n'
)
# choose identifiability functions to test
ident_fun_choice = [0]
# get combinations of experimental datasets
experimental_datasets_3_expts, \
    experiment_choice, combination_choice = arrange_experimental_data(exp_xss, exp_fss, perturbation_details,
                                                                      experiments_per_set=3, flux_id=exp_flux_index,
                                                                      experiment_choice=[0,
Ejemplo n.º 2
0
    "K3pep": np.array([.1]),
    "K2pep": np.array([.3]),
    "vemax": np.array([1.1]),
    "Kefdp": np.array([.45]),
    "ne": np.array([2]),
    "d": np.array([.25]),
    "V4max": np.array([.2]),
    "k1cat": np.array([1]),
    "V3max": np.array([1]),
    "V2max": np.array([1]),
    "ac": np.array([.1])
}

# get experimental system steady state data without noise
exp_xss, exp_fss, exp_ssid, perturbation_details = \
    generate_expdata(y0, cvode_options, ode_parameter_values, noise=0, kinetics=2, dynamic_plot=0,
                     perturbation_plot=0)

# arrange experimental data to form multiple data sets
exp_flux_index = np.array([0, 3, 2, 4, 1, 5])

# get combination of 2 experiments and perform identifiability on all fluxes that require 2 data sets
print('Practical Identifiability Analysis of fluxes with 2 parameters \n')
# choose which identifiability functions to test
ident_fun_choice_2 = [0, 1]
# get combinations of experimental datasets
experimental_datasets_2_expts, \
    experiment_choice_2, combination_choice_2 = arrange_experimental_data(exp_xss, exp_fss, perturbation_details,
                                                                          experiments_per_set=2, flux_id=exp_flux_index,
                                                                          experiment_choice=[0, 1, 2, 8, 9, 10, 11, 12])
ident_details_2 = flux_ident_2_data_combination(
    experimental_datasets_2_expts,
Ejemplo n.º 3
0
from kotte_model import arrange_experimental_data
from process_ident_data import process_info
# from kotte_model import write_results_2_file
# from plot_ident_results import flux_parameter_plot_data
from process_ident_data import useful_experiments

# generate noisy experimental data for testing identifiability
y0 = np.array([5, 1, 1])
# default parameter values
cvode_options = ('Newton', 'Adams', 1e-10, 1e-10, 200)
ode_parameter_values = np.array(
    [.1, .1, 4e6, .1, .3, 1.1, .45, 2, .25, .2, 1, 1, 1, .1])

# get noisy experimental system steady state data
noisy_exp_xss, noisy_exp_fss, noisy_exp_ssid, perturbation_details = \
    generate_expdata(y0, cvode_options, ode_parameter_values)

# arrange experimental data to form multiple data sets
exp_flux_index = np.array([0, 3, 2, 4])
# get combinations of experimental datasets
experimental_datasets = arrange_experimental_data(noisy_exp_xss, noisy_exp_fss,
                                                  perturbation_details, 3,
                                                  exp_flux_index)

# identifiability for all kotte fluxes
ident_details = establish_kotte_flux_identifiability(experimental_datasets,
                                                     choose=10)
print('Perturbation analysis for identifiability complete.\n')

# data processing
data_list, original_data_ident, combo_data_ident, max_parameter = process_info(
Ejemplo n.º 4
0
from kotte_model import flux_ident_3_data_combination
from process_ident_data import process_info_sample
from plot_ident_results import data_utility_plot
from plot_ident_results import parameter_identifibaility_plot
from plot_ident_results import parameter_experiment_info_plot

# generate noisy experimental data for testing identifiability
y0 = np.array([5, 1, 1])
# default parameter values
cvode_options = ('Newton', 'Adams', 1e-10, 1e-10, 200)
ode_parameter_values = np.array(
    [.1, .1, 4e6, .1, .3, 1.1, .45, 2, .25, .2, 1, 1, 1, .1])

# get experimental system steady state data without noise
exp_xss, exp_fss, exp_ssid, perturbation_details = \
    generate_expdata(y0, cvode_options, ode_parameter_values, noise=1, number_of_samples=50)

# arrange experimental data to form multiple data sets
exp_flux_index = np.array([0, 3, 2, 4])

# get combination of 2 experiments and perform identifiability on all fluxes that require 2 data sets
print('Practical Identifiability Analysis of fluxes with 2 parameters \n')
choose_2 = range(
    0, 306)  # choose numbr of experimental datasets to use of analysis
# get combinations of experimental datasets
experimental_datasets_2_expts = \
    arrange_experimental_data(exp_xss, exp_fss, perturbation_details, 2, exp_flux_index, choose_2)
ident_details_2 = flux_ident_2_data_combination(experimental_datasets_2_expts,
                                                choose=choose_2,
                                                flux_ids=[1, 2],
                                                flux_choice=[1, 0])