Ejemplo n.º 1
0
def rdfds(func,
          initial_x,
          L,
          m,
          t,
          maximum_iterations=1000,
          direction_generator=None,
          newton_eps=1e-5):
    '''
    m:              batch size when computing gradient.
    t:              smoothing parameter when computing gradient.
    '''

    x = np.matrix(initial_x)
    n = x.shape[0]
    # initialization
    xs = []
    xs.append(x.copy())

    runtimes = []
    start_time = time.time()
    runtimes.append(time.time() - start_time)

    if not direction_generator:
        direction_generator = sphere_point_generator(n)

    for k in range(maximum_iterations):
        alpha = 1 / (48 * n * L)
        gradient = approximate_gradient(func, x, direction_generator, t, m)
        #newton_f = lambda z, order: V_function(alpha, gradient, x, z, order)
        #x, newton_values, _, _ = newton( newton_f, x, newton_eps, 100, backtracking_line_search)
        x = mirror_descent(x, gradient, alpha * n)
        xs.append(x.copy())
        runtimes.append(time.time() - start_time)
    return x, xs, runtimes, "RDFDS"
Ejemplo n.º 2
0
def ardfds_e(func,
             noisy_func,
             initial_x,
             L,
             m,
             t,
             f_star,
             filename,
             maximum_iterations=1000,
             direction_generator=None,
             sigma=0.0001,
             stepsize_constant=1):
    x = initial_x.copy()
    y = x.copy()
    z = x.copy()
    n = len(x)
    # initialization

    # new
    residuals_func = np.zeros((maximum_iterations + 1)) * 1.0
    start_residual_func = func(x) - f_star
    residuals_func[0] = 1.0

    runtimes = np.zeros((maximum_iterations + 1)) * 1.0
    start_time = time.time()
    runtimes[0] = (time.time() - start_time)

    if not direction_generator:
        direction_generator = sphere_point_generator(n)

    for k in range(maximum_iterations):
        alpha = (k + 2) / (96 * n * n * L)
        tau = 2 / (k + 2)
        x = tau * z + (1 - tau) * y
        xi = norm(scale=sigma).rvs()
        gradient = approximate_gradient(noisy_func, x, xi, direction_generator,
                                        t, m)
        y = x - 1 / (2 * L) * gradient
        z = mirror_descent(z, gradient, alpha * n * stepsize_constant)
        residuals_func[k] = ((func(y) - f_star) * 1.0 / start_residual_func)
        runtimes[k] = (time.time() - start_time)
    pickle.dump(
        runtimes,
        open(
            "dump/" + filename + '_' + str(len(x)) + 'dim_' +
            str(maximum_iterations) + 'it_' + str(stepsize_constant) +
            'stepsz' + "_runtimes_ardfds_e.txt", 'wb'))
    pickle.dump(
        residuals_func,
        open(
            "dump/" + filename + '_' + str(len(x)) + 'dim_' +
            str(maximum_iterations) + 'it_' + str(stepsize_constant) +
            'stepsz' + "_func_ardfds_e.txt", 'wb'))
    return y
Ejemplo n.º 3
0
def rsgf(func,
         noisy_func,
         initial_x,
         L,
         m,
         mu,
         f_star,
         filename,
         maximum_iterations=1000,
         initial_stepsize=1,
         direction_generator=None,
         sigma=0.0001):

    x = initial_x.copy()
    n = len(x)

    residuals_func = np.zeros((maximum_iterations + 1)) * 1.0
    start_residual_func = func(x) - f_star
    residuals_func[0] = 1.0

    runtimes = np.zeros((maximum_iterations + 1)) * 1.0
    start_time = time.time()
    runtimes[0] = (time.time() - start_time)

    if not direction_generator:
        direction_generator = sphere_point_generator(n)

    h = 1 / np.sqrt(n + 4) * min(
        1 / (4 * L * np.sqrt(n + 4)),
        initial_stepsize / np.sqrt(maximum_iterations))

    for k in range(maximum_iterations):
        xi = norm(scale=sigma).rvs()
        gradient = approximate_gradient(noisy_func, x, xi, direction_generator,
                                        mu, 1)
        x = x - h * gradient
        residuals_func[k] = ((func(x) - f_star) * 1.0 / start_residual_func)
        runtimes[k] = (time.time() - start_time)
    pickle.dump(
        runtimes,
        open(
            "dump/" + filename + '_' + str(len(x)) + 'dim_' +
            str(maximum_iterations) + 'it' + "_runtimes_rsgf.txt", 'wb'))
    pickle.dump(
        residuals_func,
        open(
            "dump/" + filename + '_' + str(len(x)) + 'dim_' +
            str(maximum_iterations) + 'it' + "_func_rsgf.txt", 'wb'))
    return x
Ejemplo n.º 4
0
def rdfds_ne(func,
             noisy_func,
             initial_x,
             L,
             m,
             t,
             f_star,
             filename,
             maximum_iterations=1000,
             direction_generator=None,
             sigma=0.0001,
             stepsize_constant=1):

    x = initial_x.copy()
    n = len(x)

    residuals_func = np.zeros((maximum_iterations + 1)) * 1.0
    start_residual_func = func(x) - f_star
    residuals_func[0] = 1.0

    runtimes = np.zeros((maximum_iterations + 1)) * 1.0
    start_time = time.time()
    runtimes[0] = (time.time() - start_time)

    if not direction_generator:
        direction_generator = sphere_point_generator(n)

    rho_n = (16.0 * np.log(n) - 8.0) / n
    for k in range(maximum_iterations):
        alpha = 1 / (48 * n * rho_n * L)
        xi = norm(scale=sigma).rvs()
        gradient = approximate_gradient(noisy_func, x, xi, direction_generator,
                                        t, m)
        x = mirror_descent_ne(x, gradient, alpha * n * stepsize_constant)
        residuals_func[k] = ((func(x) - f_star) * 1.0 / start_residual_func)
        runtimes[k] = (time.time() - start_time)
    pickle.dump(
        runtimes,
        open(
            "dump/" + filename + '_' + str(len(x)) + 'dim_' +
            str(maximum_iterations) + 'it_' + str(stepsize_constant) +
            'stepsz' + "_runtimes_rdfds_ne.txt", 'wb'))
    pickle.dump(
        residuals_func,
        open(
            "dump/" + filename + '_' + str(len(x)) + 'dim_' +
            str(maximum_iterations) + 'it_' + str(stepsize_constant) +
            'stepsz' + "_func_rdfds_ne.txt", 'wb'))
    return x
Ejemplo n.º 5
0
def ardfds(func,
           initial_x,
           L,
           m,
           t,
           maximum_iterations=1000,
           direction_generator=None,
           newton_eps=1e-5):
    '''
    m:              batch size when computing gradient.
    t:              smoothing parameter when computing gradient.
    '''
    x = np.matrix(initial_x)
    y = x.copy()
    z = x.copy()
    n = x.shape[0]
    # initialization
    xs = []
    xs.append(x.copy())
    runtimes = []
    start_time = time.time()
    runtimes.append(time.time() - start_time)
    if not direction_generator:
        direction_generator = sphere_point_generator(n)

    for k in range(maximum_iterations):
        alpha = (k + 2) / (96 * n * n * L)
        tau = 2 / (k + 2)
        gradient = approximate_gradient(func, x, direction_generator, t, m)
        x = tau * z + (1 - tau) * y
        y = x - 1 / (2 * L) * gradient
        z = mirror_descent(z, gradient, alpha * n)
        #newton_f = lambda x, order: V_function(alpha, gradient, z, x, order)
        #z, newton_values, _, _ = newton( newton_f, x, newton_eps, 100, backtracking_line_search)
        xs.append(y.copy())
        runtimes.append(time.time() - start_time)
    return y, xs, runtimes, "ARDFDS"
Ejemplo n.º 6
0
# the vector of linear coefficient of the quadratic function
b = np.matrix('0; 0')
#func = lambda x, order=0: quadratic(H, b,x, order)
func = lambda x, order=0: nesterov_function(x, order)
noisy_func = lambda x, n, explicit_noise=None: noisy_function(
    func, x, noise_G, n, explicit_noise=explicit_noise, noise_mode="multiply")
initial_x = np.matrix('10;10')
N = 4000
t = 5e-3
t1 = 5e-3
m = 100
n = initial_x.shape[0]
L = compute_L(func, n, 100)
#L = 1
print(L)
direction_G1 = sphere_point_generator(n)
direction_G2 = gaussian_point_generator(n)
x0, xs0, _, _ = alg.rdfds(noisy_func,
                          initial_x,
                          L,
                          m,
                          t,
                          N,
                          direction_generator=direction_G1)
'''
x1, xs1,time2 = alg.rsgf(
    noisy_func,
    initial_x,
    L,
    m,
    t1,