Ejemplo n.º 1
0
 def get(self):
     index = self.context['experiment']['index'] - 1
     index %= len(self.population)
     origin = self.population[index]
     dna = DNASequence()
     dna.fromstring(origin['dna'])
     mutate(dna, self.data['mutations'])
     return dna
Ejemplo n.º 2
0
def decode(dna: DNASequence) -> float:
    r = (-1.0, 0.0, 1.0)
    while not dna.finish:
        c = dna.any(_SELECT_FIRST_HALF, _SELECT_SECOND_HALF, _INCREASE_RANGE,
                    _SELECT_RANGE_START, _SELECT_RANGE_CENTER,
                    _SELECT_RANGE_END)

        if c == _SELECT_FIRST_HALF:
            r = (r[0], r[0] + (r[1] - r[0]) * 0.5, r[1])
            continue
        elif c == _SELECT_SECOND_HALF:
            r = (r[1], r[1] + (r[2] - r[1]) * 0.5, r[2])
            continue
        elif c == _INCREASE_RANGE:
            r = (r[0] * 2, r[1], r[2] * 2)
            continue
        elif c == _SELECT_RANGE_START:
            return r[0]
        elif c == _SELECT_RANGE_CENTER:
            return r[1]
        elif c == _SELECT_RANGE_END:
            return r[2]
        else:
            break
    return r[1]
Ejemplo n.º 3
0
def _create_neuron(dna: DNASequence, network: NeuralNetwork, neuron: NeuralNetworkNeuron):
    dna.extend(DNASequences.NEURON_CREATE)
    neuron_layer_index = network.layers.index(neuron.layer)
    # write bias
    float_encode(dna, neuron.bias)
    for connection in neuron.connections:
        dna.extend(DNASequences.NEURON_CREATE_LINK)
        node = connection.node  # type: NeuralNetworkNeuron
        layer_size = len(node.layer.neurons) - 1

        if layer_size == 0:
            layer_size = 1
        node_index = node.layer.neurons.index(node) / layer_size * __NEURON_INDEX_REMAP

        if node.layer == network.input:
            link_layer_index = -1
        else:
            link_layer_index = network.layers.index(node.layer)
        relative_index = neuron_layer_index - link_layer_index - 1
        float_encode(dna, relative_index + node_index)
        float_encode(dna, connection.weight)
Ejemplo n.º 4
0
def assemble(dna: DNASequence, network: NeuralNetwork):
    connections = []
    while not dna.finish:
        c = dna.any(DNASequences.NEURON_CREATE_LAYER, DNASequences.NEURON_CREATE, DNASequences.NEURON_CREATE_LINK)
        if c == DNASequences.NEURON_CREATE_LAYER:
            # skip layer creation if previous empty
            if network.layers and not network.layers[-1].neurons:
                continue
            network.layers.append(NeuralNetworkLayer(0))
        elif c == DNASequences.NEURON_CREATE:
            if not network.layers:
                continue
            current_layer = network.layers[-1]
            bias = float_decode(dna)
            neuron = NeuralNetworkNeuron(current_layer)
            neuron.bias = bias
            current_layer.neurons.append(neuron)
        elif c == DNASequences.NEURON_CREATE_LINK:
            if not network.layers or not network.layers[-1].neurons:
                continue
            neuron = network.layers[-1].neurons[-1]
            link_data = float_decode(dna)
            weight = float_decode(dna)
            connections.append(NeuronDNAConnection(neuron, link_data, weight))

    while not network.layers[-1].neurons:
        del network.layers[-1]
    network.outputs = network.layers[-1]

    layers = list()
    layers.append(network.input)
    layers.extend(network.layers)

    for connection in connections:
        neuron = connection.neuron  # type: NeuralNetworkNeuron
        layer_index = layers.index(neuron.layer)
        link_neuron_address, link_layer_address = math.modf(connection.link_data)

        layer_index -= math.trunc(link_layer_address + __ROUND_VALUE) + 1
        if len(layers) >= layer_index < 0:
            continue

        link_layer = layers[layer_index]  # type: NeuralNetworkLayer
        link_neuron_index = (len(link_layer.neurons)-1) * (link_neuron_address / __NEURON_INDEX_REMAP)
        neuron.add_connection(link_layer.neurons[math.trunc(link_neuron_index + __ROUND_VALUE)], connection.weight)
Ejemplo n.º 5
0
def encode(dna: DNASequence, value: float, accuracy: float = EPS):
    r = (-1.0, 0.0, 1.0)
    while True:
        # check for match and range control values
        if abs(r[0] - value) <= accuracy:
            dna.extend(_SELECT_RANGE_START)
            break
        if abs(r[1] - value) <= accuracy:
            dna.extend(_SELECT_RANGE_CENTER)
            break
        if abs(r[2] - value) <= accuracy:
            dna.extend(_SELECT_RANGE_END)
            break

        if value < r[0] or value > r[2]:
            dna.extend(_INCREASE_RANGE)
            r = (r[0] * 2, r[1], r[2] * 2)
            continue

        if r[0] < value < r[1]:
            dna.extend(_SELECT_FIRST_HALF)
            r = (r[0], r[0] + (r[1] - r[0]) * 0.5, r[1])
            continue

        if r[1] < value < r[2]:
            dna.extend(_SELECT_SECOND_HALF)
            r = (r[1], r[1] + (r[2] - r[1]) * 0.5, r[2])
            continue

        assert False and "Problem"
Ejemplo n.º 6
0
def mutate(dna: DNASequence, mutation_count: int) -> None:
    while mutation_count:
        mutation_count -= 1
        index = random.randint(0, len(dna)-1)
        shift = random.randint(DNA.A, DNA.G)
        dna.insert(index, shift)
Ejemplo n.º 7
0
def decompile(network: NeuralNetwork):
    dna = DNASequence()
    for layer in network.layers:
        _create_layer(dna, network, layer)

    return dna
Ejemplo n.º 8
0
def _create_layer(dna: DNASequence, network: NeuralNetwork, layer: NeuralNetworkLayer):
    dna.extend(DNASequences.NEURON_CREATE_LAYER)
    for neuron in layer.neurons:
        _create_neuron(dna, network, neuron)