Ejemplo n.º 1
0
def tileBoundsLonLat(zoom, x, y):
    corners = ((x, y), (x + 1, y + 1))
    pixelCorners = [tileIndexToPixels(*corner) for corner in corners]
    mercatorCorners = [
        transform.pixelsToMeters(*(pixels + (zoom, )))
        for pixels in pixelCorners
    ]
    nw, se = [transform.metersToLatLon(c) for c in mercatorCorners]
    west, north = nw
    east, south = se
    return {'north': north, 'south': south, 'east': east, 'west': west}
Ejemplo n.º 2
0
def imageMapBounds(imageSize, tform):
    w, h = imageSize
    imageCorners = cornerPoints([0, 0, w, h])
    mercatorCorners = [tform.forward(c) for c in imageCorners]
    latLonCorners = [transform.metersToLatLon(c) for c in mercatorCorners]
    bounds = Bounds(latLonCorners)
    return {
        'west': bounds.xmin,
        'south': bounds.ymin,
        'east': bounds.xmax,
        'north': bounds.ymax
    }
Ejemplo n.º 3
0
 def parseManualEntryPointPairs(self, manualInfoDict):
     '''Unpack the inlier point pairs from an entry in the geocamTiePoint_overlay table'''
 
     imageInliers = []
     gdcInliers   = []
     allPoints = manualInfoDict['points']
     for point in allPoints:
         if (point[0] == None) or (point[1] == None) or (point[2] == None) or (point[3] == None):
             continue # Skip buggy entries!
         # The world coordinates in the manual table are stored in projected coordinates
         gdcCoord = transform.metersToLatLon((point[0], point[1]))
         gdcInliers.append(gdcCoord)
         imageInliers.append((point[2], point[3]))
         
     return (imageInliers, gdcInliers)
Ejemplo n.º 4
0
def getPixelToGdcTransform(imagePath, pixelToProjectedTransform=None):
    '''Returns a pixel to GDC transform.
       The input image must either be a nicely georegistered image from Earth Engine
       or a pixel to projected coordinates transform must be provided.'''

    if pixelToProjectedTransform:
        # Have image to projected transform, convert it to an image to GDC transform.

        # Use the simple file info call (the input file may not have geo information)
        (width, height) = IrgGeoFunctions.getImageSize(imagePath)

        imagePoints = []
        gdcPoints = []

        # Loop through a spaced out grid of pixels in the image
        pointPixelSpacing = (width +
                             height) / 20  # Results in about 100 points
        for r in range(0, width, pointPixelSpacing):
            for c in range(0, height, pointPixelSpacing):
                # This pixel --> projected coords --> lonlat coord
                thisPixel = numpy.array([float(c), float(r)])
                projectedCoordinate = pixelToProjectedTransform.forward(
                    thisPixel)
                gdcCoordinate = transform.metersToLatLon(projectedCoordinate)

                imagePoints.append(thisPixel)
                gdcPoints.append(gdcCoordinate)
        # Solve for a transform with all of these point pairs
        pixelToGdcTransform = transform.getTransform(
            numpy.asarray(gdcPoints), numpy.asarray(imagePoints))

    else:  # Using a reference image from EE which will have nice bounds.

        # Use the more thorough file info call
        stats = IrgGeoFunctions.getImageGeoInfo(imagePath, False)
        (width, height) = stats['image_size']
        (minLon, maxLon, minLat, maxLat) = stats['lonlat_bounds']

        # Make a transform from ref pixel to GDC using metadata on disk
        xScale = (maxLon - minLon) / width
        yScale = (maxLat - minLat) / height
        transformMatrix = numpy.array([[xScale, 0, minLon],
                                       [0, -yScale, maxLat], [0, 0, 1]])
        pixelToGdcTransform = transform.LinearTransform(transformMatrix)

    return pixelToGdcTransform
Ejemplo n.º 5
0
    def generateGeotiffExport(self, exportName, metaJson, slug):
        """
        This generates a geotiff from RPC.
        """
        overlay = Overlay.objects.get(alignedQuadTree = self)
        imageSizeType = overlay.imageData.sizeType
        now = datetime.datetime.utcnow()
        timestamp = now.strftime('%Y-%m-%d-%H%M%S-UTC')
        
        # get image width and height
        imageWidth = overlay.imageData.width
        imageHeight = overlay.imageData.height
        
        # update the center point with current transform and use those values
        transformDict  = overlay.extras.transform
        tform =  transform.makeTransform(transformDict)
        center_meters = tform.forward([imageWidth / 2, imageHeight / 2])
        clon, clat  = transform.metersToLatLon(center_meters)
        # get the RPC values 
        T_rpc = rpcModel.fitRpcToModel(self.reversePts, 
                                     imageWidth, imageHeight,
                                     clon, clat)
        srs = gdalUtil.EPSG_4326
        # get original image
        imgPath = overlay.getRawImageData().image.url.replace('/data/', settings.DATA_ROOT)
        # reproject and tar the output tiff
        geotiffExportName = exportName + ('-%s-geotiff_%s' % (imageSizeType, timestamp))
        geotiffFolderPath = settings.DATA_ROOT + 'geocamTiePoint/export/' + geotiffExportName
        dosys('mkdir %s' % geotiffFolderPath)

        fullFilePath = geotiffFolderPath + '/' + geotiffExportName +'.tif'
        gdalUtil.reprojectWithRpcMetadata(imgPath, T_rpc.getVrtMetadata(), srs, fullFilePath)

        geotiff_writer = quadTree.TarWriter(geotiffExportName)
        arcName = geotiffExportName + '.tif'
        geotiff_writer.writeData('meta.json', dumps(metaJson))
        geotiff_writer.addFile(fullFilePath, geotiffExportName + '/' + arcName)  # double check this line (second arg may not be necessary)
        self.geotiffExportName = '%s.tar.gz' % geotiffExportName
        self.geotiffExport.save(self.geotiffExportName,
                                ContentFile(geotiff_writer.getData()))
def convertTransformToGeo(imageToRefImageTransform, newImagePath, refImagePath, refImageGeoTransform=None):
    '''Converts an image-to-image homography to the ProjectiveTransform
       class used elsewhere in geocam.
       Either the reference image must be geo-registered, or the geo transform for it
       must be provided.'''

    # Convert the image-to-image transform parameters to a class
    temp = numpy.array([imageToRefImageTransform[0:3],
                        imageToRefImageTransform[3:6],
                        imageToRefImageTransform[6:9]] )
    imageToRefTransform = transform.ProjectiveTransform(temp)

    newImageSize = IrgGeoFunctions.getImageSize(newImagePath)
    refImageSize = IrgGeoFunctions.getImageSize(refImagePath)

    # Get a pixel to GDC transform for the reference image
    refPixelToGdcTransform = registration_common.getPixelToGdcTransform(
                                                  refImagePath, refImageGeoTransform)

    # Generate a list of point pairs
    imagePoints = []
    projPoints  = []
    gdcPoints   = []
    
    
    print 'transform = \n' + str(imageToRefTransform.matrix)
    
    # Loop through an evenly spaced grid of pixels in the new image
    # - For each pixel, compute the desired output coordinate
    pointPixelSpacing = (newImageSize[0] + newImageSize[1]) / 20 # Results in about 100 points
    for r in range(0, newImageSize[0], pointPixelSpacing):
        for c in range(0, newImageSize[1], pointPixelSpacing):
            # Get pixel in new image and matching pixel in the reference image
            thisPixel       = numpy.array([float(c), float(r)])
            pixelInRefImage = imageToRefTransform.forward(thisPixel)

            # If any pixel transforms outside the reference image our transform
            # is probably invalid but continue on skipping this pixel.
            if ((not registration_common.isPixelValid(thisPixel, newImageSize)) or
                (not registration_common.isPixelValid(pixelInRefImage, refImageSize))):
                continue

            # Compute the location of this pixel in the projected coordinate system
            #  used by the transform.py file.
            if (not refImageGeoTransform):
                # Use the geo information of the reference image
                gdcCoordinate       = refPixelToGdcTransform.forward(pixelInRefImage)
                projectedCoordinate = transform.lonLatToMeters(gdcCoordinate)
            else: # Use the user-provided transform
                projectedCoordinate = refImageGeoTransform.forward(pixelInRefImage)
                gdcCoordinate       = transform.metersToLatLon(projectedCoordinate)
                
            imagePoints.append(thisPixel)
            projPoints.append(projectedCoordinate)
            gdcPoints.append(gdcCoordinate)
            #print str(thisPixel) + ' --> ' + str(gdcCoordinate) + ' <--> ' + str(projectedCoordinate)

    # Compute a transform object that converts from the new image to projected coordinates
    #print 'Converting transform to world coordinates...'
    #testImageToProjectedTransform = transform.getTransform(numpy.asarray(worldPoints),
    #                                                       numpy.asarray(imagePoints))
    testImageToProjectedTransform = transform.ProjectiveTransform.fit(numpy.asarray(projPoints),
                                                                      numpy.asarray(imagePoints))
    
    testImageToGdcTransform = transform.ProjectiveTransform.fit(numpy.asarray(gdcPoints),
                                                                numpy.asarray(imagePoints))
    
    #print refPixelToGdcTransform
    #print testImageToProjectedTransform
    #for i, w in zip(imagePoints, worldPoints):
    #    print str(i) + ' --> ' + str(w) + ' <--> ' + str(testImageToProjectedTransform.forward(i))
    
    return (testImageToProjectedTransform, testImageToGdcTransform, refPixelToGdcTransform)