Ejemplo n.º 1
0
def moas_closed_loop(A, B, K, X, U):
    # closed loop dynamics
    A_cl = A + B.dot(K)
    # constraints for the maximum output admissible set
    lhs_cl = np.vstack((X.lhs_min, U.lhs_min.dot(K)))
    rhs_cl = np.vstack((X.rhs_min, U.rhs_min))
    X_cl = Polytope(lhs_cl, rhs_cl)
    X_cl.assemble()
    # compute maximum output admissible set
    return moas(A_cl, X_cl)
Ejemplo n.º 2
0
def moas(A, X):
    """
    Returns the maximum output admissible set (see Gilbert, Tan - Linear Systems with State and Control Constraints, The Theory and Application of Maximal Output Admissible Sets) for a non-actuated linear system with state constraints (the output vector is supposed to be the entire state of the system, i.e. y=x and C=I).

    INPUTS:
        A: state transition matrix
        X: constraint polytope X.lhs * x <= X.rhs

    OUTPUTS:
        moas: maximum output admissible set (instatiated as a polytope)
    """

    # ensure that the system is stable (otherwise the algorithm doesn't converge)
    eig_max = np.max(np.absolute(np.linalg.eig(A)[0]))
    if eig_max > 1:
        raise ValueError('Cannot compute MOAS for unstable systems')

    # Gilber and Tan algorithm
    [n_constraints, n_variables] = X.lhs_min.shape
    t = 0
    convergence = False
    while convergence == False:

        # cost function gradients for all i
        J = X.lhs_min.dot(np.linalg.matrix_power(A, t + 1))

        # constraints to each LP
        cons_lhs = np.vstack([
            X.lhs_min.dot(np.linalg.matrix_power(A, k))
            for k in range(0, t + 1)
        ])
        cons_rhs = np.vstack([X.rhs_min for k in range(0, t + 1)])

        # list of all minima
        J_sol = []
        for i in range(0, n_constraints):
            J_sol_i = linear_program(np.reshape(-J[i, :], (n_variables, 1)),
                                     cons_lhs, cons_rhs)[1]
            J_sol.append(-J_sol_i - X.rhs_min[i])

        # convergence check
        if np.max(J_sol) < 0:
            convergence = True
        else:
            t += 1

    # define polytope
    moas = Polytope(cons_lhs, cons_rhs)
    moas.assemble()

    return moas
Ejemplo n.º 3
0
    def polytope(self, qp):
        """
        Stores a polytope that describes the critical region in the parameter space.
        """

        # multipliers explicit solution
        [G_A, W_A, S_A] = [qp.G[self.active_set,:], qp.W[self.active_set,:], qp.S[self.active_set,:]]
        [G_I, W_I, S_I] = [qp.G[self.inactive_set,:], qp.W[self.inactive_set,:], qp.S[self.inactive_set,:]]
        H_A = np.linalg.inv(G_A.dot(qp.H_inv.dot(G_A.T)))
        self.lambda_A_offset = - H_A.dot(W_A)
        self.lambda_A_linear = - H_A.dot(S_A)

        # primal variables explicit solution
        self.z_offset = - qp.H_inv.dot(G_A.T.dot(self.lambda_A_offset))
        self.z_linear = - qp.H_inv.dot(G_A.T.dot(self.lambda_A_linear))

        # primal original variables explicit solution
        self.u_offset = self.z_offset
        self.u_linear = self.z_linear - np.linalg.inv(qp.H).dot(qp.F.T)

        # optimal value function explicit solution
        # V = .5*u_feedforward.T.dot(self.qp.H.dot(u_feedforward)) + x0.T.dot(self.qp.F.dot(u_feedforward)) + .5*x0.T.dot(self.qp.Q).dot(x0)
        self.V_offset = .5*self.u_offset.T.dot(qp.H).dot(self.u_offset)
        self.V_linear = self.u_offset.T.dot(qp.H).dot(self.u_linear) + self.u_offset.T.dot(qp.F.T)
        self.V_quadratic = self.u_linear.T.dot(qp.H).dot(self.u_linear) + qp.Q + 2.*qp.F.dot(self.u_linear)

        # equation (12) (modified: only inactive indices considered)
        lhs_type_1 = G_I.dot(self.z_linear) - S_I
        rhs_type_1 = - G_I.dot(self.z_offset) + W_I

        # equation (13)
        lhs_type_2 = - self.lambda_A_linear
        rhs_type_2 = self.lambda_A_offset

        # gather facets of type 1 and 2 to define the polytope (note the order: the ith facet of the cr is generated by the ith constraint)
        lhs = np.zeros((self.n_constraints, self.n_parameters))
        rhs = np.zeros((self.n_constraints, 1))
        lhs[self.inactive_set + self.active_set, :] = np.vstack((lhs_type_1, lhs_type_2))
        rhs[self.inactive_set + self.active_set] = np.vstack((rhs_type_1, rhs_type_2))

        # construct polytope
        self.polytope = Polytope(lhs, rhs)
        self.polytope.assemble()

        return
Ejemplo n.º 4
0
 def backward_reachability_analysis(self, switching_sequence):
     if self.X_N is None:
         raise ValueError('A terminal constraint is needed for the backward reachability analysis!')
     if len(switching_sequence) != self.N:
         raise ValueError('Switching sequence not coherent with the controller horizon.')
     print('Computing feasible set for the switching sequence ' + str(switching_sequence))
     tic = time.time()
     feasible_set = self.X_N
     A_sequence = [self.sys.affine_systems[switch].A for switch in switching_sequence]
     B_sequence = [self.sys.affine_systems[switch].B for switch in switching_sequence]
     c_sequence = [self.sys.affine_systems[switch].c for switch in switching_sequence]
     U_sequence = [self.sys.input_domains[switch] for switch in switching_sequence]
     X_sequence = [self.sys.state_domains[switch] for switch in switching_sequence]
     for i in range(self.N-1,-1,-1):
         lhs_x = feasible_set.lhs_min.dot(A_sequence[i])
         lhs_u = feasible_set.lhs_min.dot(B_sequence[i])
         lhs = np.hstack((lhs_x, lhs_u))
         rhs = feasible_set.rhs_min - feasible_set.lhs_min.dot(c_sequence[i])
         feasible_set = Polytope(lhs, rhs)
         lhs = linalg.block_diag(X_sequence[i].lhs_min, U_sequence[i].lhs_min)
         rhs = np.vstack((X_sequence[i].rhs_min, U_sequence[i].rhs_min))
         feasible_set.add_facets(lhs, rhs)
         feasible_set.assemble()
         feasible_set = feasible_set.orthogonal_projection(range(self.sys.n_x))
     toc = time.time()
     print('Feasible set computed in ' + str(toc-tic) + ' s')
     return feasible_set
Ejemplo n.º 5
0
def constraint_condenser(sys, X_N, switching_sequence):
    N = len(switching_sequence)
    G_u, W_u, E_u = input_constraint_condenser(sys, switching_sequence)
    G_x, W_x, E_x = state_constraint_condenser(sys, X_N, switching_sequence)
    G = np.vstack((G_u, G_x))
    W = np.vstack((W_u, W_x))
    E = np.vstack((E_u, E_x))
    p = Polytope(np.hstack((G, -E)), W)
    p.assemble()
    if not p.empty:
        G = p.lhs_min[:,:sys.n_u*N]
        E = - p.lhs_min[:,sys.n_u*N:]
        W = p.rhs_min
    else:
        G = None
        W = None
        E = None
    return G, W, E
Ejemplo n.º 6
0
B_1 = np.array([[1.]])
c_1 = np.array([[0.]])
sys_1 = ds.DTAffineSystem.from_continuous(A_1, B_1, c_1, t_s)

A_2 = np.array([[-1.]])
B_2 = np.array([[1.]])
c_2 = np.array([[2.]])
sys_2 = ds.DTAffineSystem.from_continuous(A_2, B_2, c_2, t_s)

sys = [sys_0, sys_1, sys_2]

# domains

x_min_0 = np.array([[-3.]])
x_max_0 = np.array([[-1.]])
X_0 = Polytope.from_bounds(x_min_0, x_max_0)
X_0.assemble()

x_min_1 = x_max_0
x_max_1 = -x_max_0
X_1 = Polytope.from_bounds(x_min_1, x_max_1)
X_1.assemble()

x_min_2 = x_max_1
x_max_2 = -x_min_0
X_2 = Polytope.from_bounds(x_min_2, x_max_2)
X_2.assemble()

u_max = np.array([[10.]])
u_min = -u_max
Ejemplo n.º 7
0
# numerical parameters
m = 1.
k = 1.
o = np.sqrt(k / m)
x_max = np.array([[1.], [1.]])
x_min = -x_max

for i, h in enumerate([.1, 1., 2., 3.5, 5., 10.]):

    plt.figure()

    # mode sequence 1
    A = np.array([[-1., 0.], [-1., -h]])
    b = np.zeros((2, 1))
    D1 = Polytope(A, b)
    D1.add_bounds(x_min, x_max)
    D1.assemble()
    D1.plot(facecolor=np.array([1., .5, .5]))
    plt.text(D1.center[0], D1.center[1], '{1}')

    # mode sequence 2
    if h <= np.pi / o:
        A = np.array([[1., 0.], [np.cos(o * h), np.sin(o * h) / o]])
        b = np.zeros((2, 1))
        D2 = Polytope(A, b)
        D2.add_bounds(x_min, x_max)
        D2.assemble()
        D2.plot(facecolor=np.array([.5, 1., .5]))
        plt.text(D2.center[0], D2.center[1], '{2}')
Ejemplo n.º 8
0
B_2 = np.array([[1.]])
c_2 = np.array([[0.]])
sys_2 = ds.DTAffineSystem.from_continuous(A_2, B_2, c_2, t_s)

A_3 = np.array([[-1.]])
B_3 = np.array([[1.]])
c_3 = np.array([[2.]])
sys_3 = ds.DTAffineSystem.from_continuous(A_3, B_3, c_3, t_s)

sys = [sys_1, sys_2, sys_3]

# state domains

x_min_1 = np.array([[-3.]])
x_max_1 = np.array([[-1.]])
X_1 = Polytope.from_bounds(x_min_1, x_max_1)
X_1.assemble()

x_min_2 = x_max_1
x_max_2 =  - x_max_1
X_2 = Polytope.from_bounds(x_min_2, x_max_2)
X_2.assemble()

x_min_3 = x_max_2
x_max_3 = - x_min_1
X_3 = Polytope.from_bounds(x_min_3, x_max_3)
X_3.assemble()

X = [X_1, X_2, X_3]

# inoput domains
Ejemplo n.º 9
0
# Station Positions and Shifts
quat_AB = np.array([0, 0, 0, 1])
Track_Contact_Dist = 15455
X_Shift = 17079
X_Shift_Site_Determined = 17088
X_Shift_RobotStudio = 17079
Rob_Wrist = np.array([0, 0, 200])

# Communication Parameters
Rob1_Addr = ('192.168.131.1', 8888)
Rob2_Addr = ('192.168.131.2', 8889)

# Setup the Ende Effector Polytope
Flange1 = Polytope([[250, 250, 0], [250, -250, 0], [-250, -250, 0],
                    [-250, 250, 0], [250, 250, 10], [250, -250, 10],
                    [-250, -250, 10], [-250, 250, 10]])
Flange2 = Polytope([[250, 250, 0], [250, -250, 0], [-250, -250, 0],
                    [-250, 250, 0], [250, 250, 10], [250, -250, 10],
                    [-250, -250, 10], [-250, 250, 10]])
RobA = ("Rob1", Flange1)
RobB = ("Rob2", Flange2)

# Setup the rearside walls
Wall1 = Polytope([[-1500, 5000, 5000], [-1500, 5000, -5000],
                  [-1500, -5000, -5000], [-1500, -5000, 5000],
                  [-1510, 5000, 5000], [-1510, 5000, -5000],
                  [-1510, -5000, -5000], [-1510, -5000, 5000]])
Wall2 = Polytope([[18230, 5000, 5000], [18230, 5000, -5000],
                  [18230, -5000, -5000], [18230, -5000, 5000],
                  [18250, 5000, 5000], [18250, 5000, -5000],
Ejemplo n.º 10
0
class CriticalRegion:
    """
    Implements the algorithm from Tondel et al. "An algorithm for multi-parametric quadratic programming and explicit MPC solutions"

    VARIABLES:
        n_constraints: number of contraints in the qp
        n_parameters: number of parameters of the qp
        active_set: active set inside the critical region
        inactive_set: list of indices of non active contraints inside the critical region
        polytope: polytope describing the ceritical region in the parameter space
        weakly_active_constraints: list of indices of constraints that are weakly active iside the entire critical region
        candidate_active_sets: list of lists of active sets, its ith element collects the set of all the possible
            active sets that can be found crossing the ith minimal facet of the polyhedron
        z_linear: linear term in the piecewise affine primal solution z_opt = z_linear*x + z_offset
        z_offset: offset term in the piecewise affine primal solution z_opt = z_linear*x + z_offset
        u_linear: linear term in the piecewise affine primal solution u_opt = u_linear*x + u_offset
        u_offset: offset term in the piecewise affine primal solution u_opt = u_linear*x + u_offset
        lambda_A_linear: linear term in the piecewise affine dual solution (only active multipliers) lambda_A = lambda_A_linear*x + lambda_A_offset
        lambda_A_offset: offset term in the piecewise affine dual solution (only active multipliers) lambda_A = lambda_A_linear*x + lambda_A_offset
    """

    def __init__(self, active_set, qp):

        # store active set
        print 'Computing critical region for the active set ' + str(active_set)
        [self.n_constraints, self.n_parameters] = qp.S.shape
        self.active_set = active_set
        self.inactive_set = sorted(list(set(range(0, self.n_constraints)) - set(active_set)))

        # find the polytope
        self.polytope(qp)
        if self.polytope.empty:
            return

        # find candidate active sets for the neighboiring regions
        minimal_coincident_facets = [self.polytope.coincident_facets[i] for i in self.polytope.minimal_facets]
        self.candidate_active_sets = self.candidate_active_sets(active_set, minimal_coincident_facets)

        # find weakly active constraints
        self.find_weakly_active_constraints()

        # expand the candidates if there are weakly active constraints
        if self.weakly_active_constraints:
            self.candidate_active_set = self.expand_candidate_active_sets(self.candidate_active_set, self.weakly_active_constraints)

        return

    def polytope(self, qp):
        """
        Stores a polytope that describes the critical region in the parameter space.
        """

        # multipliers explicit solution
        [G_A, W_A, S_A] = [qp.G[self.active_set,:], qp.W[self.active_set,:], qp.S[self.active_set,:]]
        [G_I, W_I, S_I] = [qp.G[self.inactive_set,:], qp.W[self.inactive_set,:], qp.S[self.inactive_set,:]]
        H_A = np.linalg.inv(G_A.dot(qp.H_inv.dot(G_A.T)))
        self.lambda_A_offset = - H_A.dot(W_A)
        self.lambda_A_linear = - H_A.dot(S_A)

        # primal variables explicit solution
        self.z_offset = - qp.H_inv.dot(G_A.T.dot(self.lambda_A_offset))
        self.z_linear = - qp.H_inv.dot(G_A.T.dot(self.lambda_A_linear))

        # primal original variables explicit solution
        self.u_offset = self.z_offset
        self.u_linear = self.z_linear - np.linalg.inv(qp.H).dot(qp.F.T)

        # optimal value function explicit solution
        # V = .5*u_feedforward.T.dot(self.qp.H.dot(u_feedforward)) + x0.T.dot(self.qp.F.dot(u_feedforward)) + .5*x0.T.dot(self.qp.Q).dot(x0)
        self.V_offset = .5*self.u_offset.T.dot(qp.H).dot(self.u_offset)
        self.V_linear = self.u_offset.T.dot(qp.H).dot(self.u_linear) + self.u_offset.T.dot(qp.F.T)
        self.V_quadratic = self.u_linear.T.dot(qp.H).dot(self.u_linear) + qp.Q + 2.*qp.F.dot(self.u_linear)

        # equation (12) (modified: only inactive indices considered)
        lhs_type_1 = G_I.dot(self.z_linear) - S_I
        rhs_type_1 = - G_I.dot(self.z_offset) + W_I

        # equation (13)
        lhs_type_2 = - self.lambda_A_linear
        rhs_type_2 = self.lambda_A_offset

        # gather facets of type 1 and 2 to define the polytope (note the order: the ith facet of the cr is generated by the ith constraint)
        lhs = np.zeros((self.n_constraints, self.n_parameters))
        rhs = np.zeros((self.n_constraints, 1))
        lhs[self.inactive_set + self.active_set, :] = np.vstack((lhs_type_1, lhs_type_2))
        rhs[self.inactive_set + self.active_set] = np.vstack((rhs_type_1, rhs_type_2))

        # construct polytope
        self.polytope = Polytope(lhs, rhs)
        self.polytope.assemble()

        return

    def find_weakly_active_constraints(self, toll=1e-8):
        """
        Stores the list of constraints that are weakly active in the whole critical region
        enumerated in the as in the equation G z <= W + S x ("original enumeration")
        (by convention weakly active constraints are included among the active set,
        so that only constraints of type 2 are anlyzed)
        """

        # equation (13), again...
        lhs_type_2 = - self.lambda_A_linear
        rhs_type_2 = self.lambda_A_offset

        # weakly active constraints are included in the active set
        self.weakly_active_constraints = []
        for i in range(0, len(self.active_set)):

            # to be weakly active in the whole region they can only be in the form 0^T x <= 0
            if np.linalg.norm(lhs_type_2[i,:]) + np.absolute(rhs_type_2[i,:]) < toll:
                print('Weakly active constraint detected!')
                self.weakly_active_constraints.append(self.active_set[i])

        return

    @staticmethod
    def candidate_active_sets(active_set, minimal_coincident_facets):
        """
        Computes one candidate active set for each non-redundant facet of a critical region
        (Theorem 2 and Corollary 1).

        INPUTS:
        active_set: active set of the parent critical region
        minimal_coincident_facets: list of facets coincident to the minimal facets
            (i.e.: [coincident_facets[i] for i in minimal_facets])

        OUTPUTS:
            candidate_active_sets: list of the candidate active sets for each minimal facet
        """

        # initialize list of condidate active sets
        candidate_active_sets = []

        # cross each non-redundant facet of the parent CR
        for coincident_facets in minimal_coincident_facets:

            # add or remove each constraint crossed to the active set of the parent CR
            candidate_active_set = set(active_set).symmetric_difference(set(coincident_facets))
            candidate_active_sets.append([sorted(list(candidate_active_set))])

        return candidate_active_sets

    @staticmethod
    def expand_candidate_active_sets(candidate_active_sets, weakly_active_constraints):
        """
        Expands the candidate active sets if there are some weakly active contraints (Theorem 5).

        INPUTS:
            candidate_active_sets: list of the candidate active sets for each minimal facet
            weakly_active_constraints: list of weakly active constraints (in the "original enumeration")

        OUTPUTS:
            candidate_active_sets: list of the candidate active sets for each minimal facet
        """

        # determine every possible combination of the weakly active contraints
        wac_combinations = []
        for n in range(1, len(weakly_active_constraints)+1):
            wac_combinations_n = itertools.combinations(weakly_active_constraints, n)
            wac_combinations += [list(c) for c in wac_combinations_n]

        # for each minimal facet of the CR add or remove each combination of wakly active constraints
        for i in range(0, len(candidate_active_sets)):
            active_set = candidate_active_sets[i][0]
            for combination in wac_combinations:
                further_active_set = set(active_set).symmetric_difference(combination)
                candidate_active_sets[i].append(sorted(list(further_active_set)))

        return candidate_active_sets

    def z_optimal(self, x):
        """
        Returns the explicit solution of the mpQP as a function of the parameter.

        INPUTS:
            x: value of the parameter

        OUTPUTS:
            z_optimal: solution of the QP
        """

        z_optimal = self.z_offset + self.z_linear.dot(x).reshape(self.z_offset.shape)
        return z_optimal

    def lambda_optimal(self, x):
        """
        Returns the explicit value of the multipliers of the mpQP as a function of the parameter.

        INPUTS:
            x: value of the parameter

        OUTPUTS:
            lambda_optimal: optimal multipliers
        """

        lambda_A_optimal = self.lambda_A_offset + self.lambda_A_linear.dot(x)
        lambda_optimal = np.zeros(len(self.active_set + self.inactive_set))
        for i in range(0, len(self.active_set)):
            lambda_optimal[self.active_set[i]] = lambda_A_optimal[i]
        return lambda_optimal

    def applies_to(self, x):
        """
        Determines is a given point belongs to the critical region.

        INPUTS:
            x: value of the parameter

        OUTPUTS:
            is_inside: flag (True if x is in the CR, False otherwise)
        """

        # check if x is inside the polytope
        is_inside = np.max(self.polytope.lhs_min.dot(x) - self.polytope.rhs_min) <= 0

        return is_inside
Ejemplo n.º 11
0
 def feasible_set(self):
     if self._feasible_set is None:
         augmented_polytope = Polytope(np.hstack((- self.C_x, self.C_u)), self.C)
         augmented_polytope.assemble()
         self._feasible_set = augmented_polytope.orthogonal_projection(range(self.C_x.shape[1]))
     return self._feasible_set