Ejemplo n.º 1
0
    def test_cumprod(self):
        result = gs.cumprod(gs.arange(1, 10))
        expected = gs.array(([1, 2, 6, 24, 120, 720, 5040, 40320, 362880]))
        self.assertAllClose(result, expected)

        result = gs.reshape(gs.arange(1, 11), (2, 5))
        result = gs.cumprod(result, axis=1)
        expected = gs.array(([[1, 2, 6, 24, 120], [6, 42, 336, 3024, 30240]]))
        self.assertAllClose(result, expected)
Ejemplo n.º 2
0
    def norm_factor_gradient(self, variances):
        """Compute normalization factor and its gradient.

        Compute normalization factor given current variance
        and dimensionality.

        Parameters
        ----------
        variances : array-like, shape=[n]
            Value of variance.

        Returns
        -------
        norm_factor : array-like, shape=[n]
            Normalisation factor.
        norm_factor_gradient : array-like, shape=[n]
            Gradient of the normalization factor.
        """
        variances = gs.transpose(gs.to_ndarray(variances, to_ndim=2))
        dim_range = gs.arange(0, self.dim, 1.0)
        alpha = self._compute_alpha(dim_range)

        binomial_coefficient = gs.ones(self.dim)
        binomial_coefficient[1:] = (self.dim - 1 + 1 - dim_range[1:]) / dim_range[1:]
        binomial_coefficient = gs.cumprod(binomial_coefficient)

        beta = ((-gs.ones(self.dim)) ** dim_range) * binomial_coefficient

        sigma_repeated = gs.repeat(variances, self.dim, -1)
        prod_alpha_sigma = gs.einsum("ij,j->ij", sigma_repeated, alpha)
        term_2 = gs.exp((prod_alpha_sigma) ** 2) * (1 + gs.erf(prod_alpha_sigma))
        term_1 = gs.sqrt(gs.pi / 2.0) * (1.0 / (2 ** (self.dim - 1)))
        term_2 = gs.einsum("ij,j->ij", term_2, beta)
        norm_factor = term_1 * variances * gs.sum(term_2, axis=-1, keepdims=True)
        grad_term_1 = 1 / variances

        grad_term_21 = 1 / gs.sum(term_2, axis=-1, keepdims=True)

        grad_term_211 = (
            gs.exp((prod_alpha_sigma) ** 2)
            * (1 + gs.erf(prod_alpha_sigma))
            * gs.einsum("ij,j->ij", sigma_repeated, alpha**2)
            * 2
        )

        grad_term_212 = gs.repeat(
            gs.expand_dims((2 / gs.sqrt(gs.pi)) * alpha, axis=0),
            variances.shape[0],
            axis=0,
        )

        grad_term_22 = grad_term_211 + grad_term_212
        grad_term_22 = gs.einsum("ij, j->ij", grad_term_22, beta)
        grad_term_22 = gs.sum(grad_term_22, axis=-1, keepdims=True)

        norm_factor_gradient = grad_term_1 + (grad_term_21 * grad_term_22)

        return gs.squeeze(norm_factor), gs.squeeze(norm_factor_gradient)
Ejemplo n.º 3
0
 def test_prod(self):
     vec = gs.random.rand(10)
     result = gs.prod(vec)
     expected = gs.cumprod(vec)[-1]
     self.assertAllClose(result, expected)