Ejemplo n.º 1
0
class TestHypersphere(geomstats.tests.TestCase):
    def setUp(self):
        gs.random.seed(1234)

        self.dimension = 4
        self.space = Hypersphere(dim=self.dimension)
        self.metric = self.space.metric
        self.n_samples = 10

    def test_random_uniform_and_belongs(self):
        """Test random uniform and belongs.

        Test that the random uniform method samples
        on the hypersphere space.
        """
        n_samples = self.n_samples
        point = self.space.random_uniform(n_samples)
        result = self.space.belongs(point)
        expected = gs.array([True] * n_samples)

        self.assertAllClose(expected, result)

    def test_random_uniform(self):
        point = self.space.random_uniform()

        self.assertAllClose(gs.shape(point), (self.dimension + 1, ))

    def test_replace_values(self):
        points = gs.ones((3, 5))
        new_points = gs.zeros((2, 5))
        indcs = [True, False, True]
        update = self.space._replace_values(points, new_points, indcs)
        self.assertAllClose(update,
                            gs.stack([gs.zeros(5),
                                      gs.ones(5),
                                      gs.zeros(5)]))

    def test_projection_and_belongs(self):
        shape = (self.n_samples, self.dimension + 1)
        result = helper.test_projection_and_belongs(self.space, shape)
        for res in result:
            self.assertTrue(res)

    def test_intrinsic_and_extrinsic_coords(self):
        """
        Test that the composition of
        intrinsic_to_extrinsic_coords and
        extrinsic_to_intrinsic_coords
        gives the identity.
        """
        space = Hypersphere(dim=2)
        point_int = gs.array([0.1, 0.0])
        point_ext = space.intrinsic_to_extrinsic_coords(point_int)
        result = space.extrinsic_to_intrinsic_coords(point_ext)
        expected = point_int

        self.assertAllClose(result, expected)

        point_ext = 1. / (gs.sqrt(2.)) * gs.array([1.0, 0.0, 1.0])
        point_int = space.extrinsic_to_intrinsic_coords(point_ext)
        result = space.intrinsic_to_extrinsic_coords(point_int)
        expected = point_ext

        self.assertAllClose(result, expected)

    def test_intrinsic_and_extrinsic_coords_vectorization(self):
        """Test change of coordinates.

        Test that the composition of
        intrinsic_to_extrinsic_coords and
        extrinsic_to_intrinsic_coords
        gives the identity.
        """
        space = Hypersphere(dim=2)
        point_int = gs.array([
            [0.1, 0.1],
            [0.1, 0.4],
            [0.1, 0.3],
            [0.0, 0.0],
            [0.1, 0.5],
        ])
        point_ext = space.intrinsic_to_extrinsic_coords(point_int)
        result = space.extrinsic_to_intrinsic_coords(point_ext)
        expected = point_int

        self.assertAllClose(result, expected)

        point_int = space.extrinsic_to_intrinsic_coords(point_ext)
        result = space.intrinsic_to_extrinsic_coords(point_int)
        expected = point_ext

        self.assertAllClose(result, expected)

    def test_log_and_exp_general_case(self):
        """Test Log and Exp.

        Test that the Riemannian exponential
        and the Riemannian logarithm are inverse.

        Expect their composition to give the identity function.

        NB: points on the n-dimensional sphere are
        (n+1)-D vectors of norm 1.
        """
        # Riemannian Log then Riemannian Exp
        # General case
        base_point = gs.array([1.0, 2.0, 3.0, 4.0, 6.0])
        base_point = base_point / gs.linalg.norm(base_point)
        point = gs.array([0.0, 5.0, 6.0, 2.0, -1.0])
        point = point / gs.linalg.norm(point)

        log = self.metric.log(point=point, base_point=base_point)
        result = self.metric.exp(tangent_vec=log, base_point=base_point)
        expected = point

        self.assertAllClose(result, expected)

    def test_log_and_exp_edge_case(self):
        """Test Log and Exp.

        Test that the Riemannian exponential
        and the Riemannian logarithm are inverse.

        Expect their composition to give the identity function.

        NB: points on the n-dimensional sphere are
        (n+1)-D vectors of norm 1.
        """
        # Riemannian Log then Riemannian Exp
        # Edge case: two very close points, base_point_2 and point_2,
        # form an angle < epsilon
        base_point = gs.array([1.0, 2.0, 3.0, 4.0, 6.0])
        base_point = base_point / gs.linalg.norm(base_point)
        point = base_point + 1e-4 * gs.array([-1.0, -2.0, 1.0, 1.0, 0.1])
        point = point / gs.linalg.norm(point)

        log = self.metric.log(point=point, base_point=base_point)
        result = self.metric.exp(tangent_vec=log, base_point=base_point)
        expected = point

        self.assertAllClose(result, expected)

    def test_exp_vectorization_single_samples(self):
        dim = self.dimension + 1

        one_vec = self.space.random_uniform()
        one_base_point = self.space.random_uniform()
        one_tangent_vec = self.space.to_tangent(one_vec,
                                                base_point=one_base_point)

        result = self.metric.exp(one_tangent_vec, one_base_point)
        self.assertAllClose(gs.shape(result), (dim, ))

        one_base_point = gs.to_ndarray(one_base_point, to_ndim=2)
        result = self.metric.exp(one_tangent_vec, one_base_point)
        self.assertAllClose(gs.shape(result), (1, dim))

        one_tangent_vec = gs.to_ndarray(one_tangent_vec, to_ndim=2)
        result = self.metric.exp(one_tangent_vec, one_base_point)
        self.assertAllClose(gs.shape(result), (1, dim))

        one_base_point = self.space.random_uniform()
        result = self.metric.exp(one_tangent_vec, one_base_point)
        self.assertAllClose(gs.shape(result), (1, dim))

    def test_exp_vectorization_n_samples(self):
        n_samples = self.n_samples
        dim = self.dimension + 1

        one_vec = self.space.random_uniform()
        one_base_point = self.space.random_uniform()
        n_vecs = self.space.random_uniform(n_samples=n_samples)
        n_base_points = self.space.random_uniform(n_samples=n_samples)

        n_tangent_vecs = self.space.to_tangent(n_vecs,
                                               base_point=one_base_point)
        result = self.metric.exp(n_tangent_vecs, one_base_point)

        self.assertAllClose(gs.shape(result), (n_samples, dim))

        one_tangent_vec = self.space.to_tangent(one_vec,
                                                base_point=n_base_points)
        result = self.metric.exp(one_tangent_vec, n_base_points)

        self.assertAllClose(gs.shape(result), (n_samples, dim))

        n_tangent_vecs = self.space.to_tangent(n_vecs,
                                               base_point=n_base_points)
        result = self.metric.exp(n_tangent_vecs, n_base_points)

        self.assertAllClose(gs.shape(result), (n_samples, dim))

    def test_log_vectorization_single_samples(self):
        dim = self.dimension + 1

        one_base_point = self.space.random_uniform()
        one_point = self.space.random_uniform()

        result = self.metric.log(one_point, one_base_point)
        self.assertAllClose(gs.shape(result), (dim, ))

        one_base_point = gs.to_ndarray(one_base_point, to_ndim=2)
        result = self.metric.log(one_point, one_base_point)
        self.assertAllClose(gs.shape(result), (1, dim))

        one_point = gs.to_ndarray(one_base_point, to_ndim=2)
        result = self.metric.log(one_point, one_base_point)
        self.assertAllClose(gs.shape(result), (1, dim))

        one_base_point = self.space.random_uniform()
        result = self.metric.log(one_point, one_base_point)
        self.assertAllClose(gs.shape(result), (1, dim))

    def test_log_vectorization_n_samples(self):
        n_samples = self.n_samples
        dim = self.dimension + 1

        one_base_point = self.space.random_uniform()
        one_point = self.space.random_uniform()
        n_points = self.space.random_uniform(n_samples=n_samples)
        n_base_points = self.space.random_uniform(n_samples=n_samples)

        result = self.metric.log(one_point, one_base_point)
        self.assertAllClose(gs.shape(result), (dim, ))

        result = self.metric.log(n_points, one_base_point)
        self.assertAllClose(gs.shape(result), (n_samples, dim))

        result = self.metric.log(one_point, n_base_points)
        self.assertAllClose(gs.shape(result), (n_samples, dim))

        result = self.metric.log(n_points, n_base_points)
        self.assertAllClose(gs.shape(result), (n_samples, dim))

    def test_exp_log_are_inverse(self):
        initial_point = self.space.random_uniform(2)
        end_point = self.space.random_uniform(2)
        vec = self.space.metric.log(point=end_point, base_point=initial_point)
        result = self.space.metric.exp(vec, initial_point)
        self.assertAllClose(end_point, result)

    def test_log_extreme_case(self):
        initial_point = self.space.random_uniform(2)
        vec = 1e-4 * gs.random.rand(*initial_point.shape)
        vec = self.space.to_tangent(vec, initial_point)
        point = self.space.metric.exp(vec, base_point=initial_point)
        result = self.space.metric.log(point, initial_point)
        self.assertAllClose(vec, result)

    def test_exp_and_log_and_projection_to_tangent_space_general_case(self):
        """Test Log and Exp.

        Test that the Riemannian exponential
        and the Riemannian logarithm are inverse.

        Expect their composition to give the identity function.

        NB: points on the n-dimensional sphere are
        (n+1)-D vectors of norm 1.
        """
        # Riemannian Exp then Riemannian Log
        # General case
        # NB: Riemannian log gives a regularized tangent vector,
        # so we take the norm modulo 2 * pi.
        base_point = gs.array([0.0, -3.0, 0.0, 3.0, 4.0])
        base_point = base_point / gs.linalg.norm(base_point)

        vector = gs.array([3.0, 2.0, 0.0, 0.0, -1.0])
        vector = self.space.to_tangent(vector=vector, base_point=base_point)

        exp = self.metric.exp(tangent_vec=vector, base_point=base_point)
        result = self.metric.log(point=exp, base_point=base_point)

        expected = vector
        norm_expected = gs.linalg.norm(expected)
        regularized_norm_expected = gs.mod(norm_expected, 2 * gs.pi)
        expected = expected / norm_expected * regularized_norm_expected

        # The Log can be the opposite vector on the tangent space,
        # whose Exp gives the base_point
        are_close = gs.allclose(result, expected)
        norm_2pi = gs.isclose(gs.linalg.norm(result - expected), 2 * gs.pi)
        self.assertTrue(are_close or norm_2pi)

    def test_exp_and_log_and_projection_to_tangent_space_edge_case(self):
        """Test Log and Exp.

        Test that the Riemannian exponential
        and the Riemannian logarithm are inverse.

        Expect their composition to give the identity function.

        NB: points on the n-dimensional sphere are
        (n+1)-D vectors of norm 1.
        """
        # Riemannian Exp then Riemannian Log
        # Edge case: tangent vector has norm < epsilon
        base_point = gs.array([10.0, -2.0, -0.5, 34.0, 3.0])
        base_point = base_point / gs.linalg.norm(base_point)
        vector = 1e-4 * gs.array([0.06, -51.0, 6.0, 5.0, 3.0])
        vector = self.space.to_tangent(vector=vector, base_point=base_point)

        exp = self.metric.exp(tangent_vec=vector, base_point=base_point)
        result = self.metric.log(point=exp, base_point=base_point)
        self.assertAllClose(result, vector)

    def test_squared_norm_and_squared_dist(self):
        """
        Test that the squared distance between two points is
        the squared norm of their logarithm.
        """
        point_a = 1.0 / gs.sqrt(129.0) * gs.array([10.0, -2.0, -5.0, 0.0, 0.0])
        point_b = 1.0 / gs.sqrt(435.0) * gs.array([1.0, -20.0, -5.0, 0.0, 3.0])
        log = self.metric.log(point=point_a, base_point=point_b)
        result = self.metric.squared_norm(vector=log)
        expected = self.metric.squared_dist(point_a, point_b)

        self.assertAllClose(result, expected)

    def test_squared_dist_vectorization_single_sample(self):
        one_point_a = self.space.random_uniform()
        one_point_b = self.space.random_uniform()

        result = self.metric.squared_dist(one_point_a, one_point_b)
        self.assertAllClose(gs.shape(result), ())

        one_point_a = gs.to_ndarray(one_point_a, to_ndim=2)
        result = self.metric.squared_dist(one_point_a, one_point_b)
        self.assertAllClose(gs.shape(result), (1, ))

        one_point_b = gs.to_ndarray(one_point_b, to_ndim=2)
        result = self.metric.squared_dist(one_point_a, one_point_b)
        self.assertAllClose(gs.shape(result), (1, ))

        one_point_a = self.space.random_uniform()
        result = self.metric.squared_dist(one_point_a, one_point_b)
        self.assertAllClose(gs.shape(result), (1, ))

    def test_squared_dist_vectorization_n_samples(self):
        n_samples = self.n_samples

        one_point_a = self.space.random_uniform()
        one_point_b = self.space.random_uniform()
        n_points_a = self.space.random_uniform(n_samples=n_samples)
        n_points_b = self.space.random_uniform(n_samples=n_samples)

        result = self.metric.squared_dist(one_point_a, one_point_b)
        self.assertAllClose(gs.shape(result), ())

        result = self.metric.squared_dist(n_points_a, one_point_b)
        self.assertAllClose(gs.shape(result), (n_samples, ))

        result = self.metric.squared_dist(one_point_a, n_points_b)
        self.assertAllClose(gs.shape(result), (n_samples, ))

        result = self.metric.squared_dist(n_points_a, n_points_b)
        self.assertAllClose(gs.shape(result), (n_samples, ))

        one_point_a = gs.to_ndarray(one_point_a, to_ndim=2)
        one_point_b = gs.to_ndarray(one_point_b, to_ndim=2)

        result = self.metric.squared_dist(n_points_a, one_point_b)
        self.assertAllClose(gs.shape(result), (n_samples, ))

        result = self.metric.squared_dist(one_point_a, n_points_b)
        self.assertAllClose(gs.shape(result), (n_samples, ))

        result = self.metric.squared_dist(n_points_a, n_points_b)
        self.assertAllClose(gs.shape(result), (n_samples, ))

    def test_norm_and_dist(self):
        """
        Test that the distance between two points is
        the norm of their logarithm.
        """
        point_a = 1.0 / gs.sqrt(129.0) * gs.array([10.0, -2.0, -5.0, 0.0, 0.0])
        point_b = 1.0 / gs.sqrt(435.0) * gs.array([1.0, -20.0, -5.0, 0.0, 3.0])
        log = self.metric.log(point=point_a, base_point=point_b)

        self.assertAllClose(gs.shape(log), (5, ))

        result = self.metric.norm(vector=log)
        self.assertAllClose(gs.shape(result), ())

        expected = self.metric.dist(point_a, point_b)
        self.assertAllClose(gs.shape(expected), ())

        self.assertAllClose(result, expected)

    def test_dist_point_and_itself(self):
        # Distance between a point and itself is 0
        point_a = 1.0 / gs.sqrt(129.0) * gs.array([10.0, -2.0, -5.0, 0.0, 0.0])
        point_b = point_a
        result = self.metric.dist(point_a, point_b)
        expected = 0.0

        self.assertAllClose(result, expected)

    def test_dist_pairwise(self):

        point_a = 1.0 / gs.sqrt(129.0) * gs.array([10.0, -2.0, -5.0, 0.0, 0.0])
        point_b = 1.0 / gs.sqrt(435.0) * gs.array([1.0, -20.0, -5.0, 0.0, 3.0])

        point = gs.array([point_a, point_b])
        result = self.metric.dist_pairwise(point)

        expected = gs.array([[0.0, 1.24864502], [1.24864502, 0.0]])

        self.assertAllClose(result, expected, rtol=1e-3)

    def test_dist_pairwise_parallel(self):
        n_samples = 15
        points = self.space.random_uniform(n_samples)
        result = self.metric.dist_pairwise(points, n_jobs=2, prefer="threads")
        is_sym = Matrices.is_symmetric(result)
        belongs = Matrices(n_samples, n_samples).belongs(result)
        self.assertTrue(is_sym)
        self.assertTrue(belongs)

    def test_dist_orthogonal_points(self):
        # Distance between two orthogonal points is pi / 2.
        point_a = gs.array([10.0, -2.0, -0.5, 0.0, 0.0])
        point_a = point_a / gs.linalg.norm(point_a)
        point_b = gs.array([2.0, 10, 0.0, 0.0, 0.0])
        point_b = point_b / gs.linalg.norm(point_b)
        result = gs.dot(point_a, point_b)
        expected = 0
        self.assertAllClose(result, expected)

        result = self.metric.dist(point_a, point_b)
        expected = gs.pi / 2

        self.assertAllClose(result, expected)

    def test_exp_and_dist_and_projection_to_tangent_space(self):
        base_point = gs.array([16.0, -2.0, -2.5, 84.0, 3.0])
        base_point = base_point / gs.linalg.norm(base_point)
        vector = gs.array([9.0, 0.0, -1.0, -2.0, 1.0])
        tangent_vec = self.space.to_tangent(vector=vector,
                                            base_point=base_point)

        exp = self.metric.exp(tangent_vec=tangent_vec, base_point=base_point)
        result = self.metric.dist(base_point, exp)
        expected = gs.linalg.norm(tangent_vec) % (2 * gs.pi)
        self.assertAllClose(result, expected)

    def test_exp_and_dist_and_projection_to_tangent_space_vec(self):
        base_point = gs.array([[16.0, -2.0, -2.5, 84.0, 3.0],
                               [16.0, -2.0, -2.5, 84.0, 3.0]])

        base_single_point = gs.array([16.0, -2.0, -2.5, 84.0, 3.0])
        scalar_norm = gs.linalg.norm(base_single_point)

        base_point = base_point / scalar_norm
        vector = gs.array([[9.0, 0.0, -1.0, -2.0, 1.0],
                           [9.0, 0.0, -1.0, -2.0, 1]])

        tangent_vec = self.space.to_tangent(vector=vector,
                                            base_point=base_point)

        exp = self.metric.exp(tangent_vec=tangent_vec, base_point=base_point)

        result = self.metric.dist(base_point, exp)
        expected = gs.linalg.norm(tangent_vec, axis=-1) % (2 * gs.pi)

        self.assertAllClose(result, expected)

    def test_geodesic_and_belongs(self):
        n_geodesic_points = 10
        initial_point = self.space.random_uniform(2)
        vector = gs.array([[2.0, 0.0, -1.0, -2.0, 1.0]] * 2)
        initial_tangent_vec = self.space.to_tangent(vector=vector,
                                                    base_point=initial_point)
        geodesic = self.metric.geodesic(
            initial_point=initial_point,
            initial_tangent_vec=initial_tangent_vec)
        t = gs.linspace(start=0.0, stop=1.0, num=n_geodesic_points)
        points = geodesic(t)
        result = gs.stack([self.space.belongs(pt) for pt in points])
        self.assertTrue(gs.all(result))

        initial_point = initial_point[0]
        initial_tangent_vec = initial_tangent_vec[0]
        geodesic = self.metric.geodesic(
            initial_point=initial_point,
            initial_tangent_vec=initial_tangent_vec)
        points = geodesic(t)
        result = self.space.belongs(points)
        expected = gs.array(n_geodesic_points * [True])
        self.assertAllClose(expected, result)

    def test_geodesic_end_point(self):
        n_geodesic_points = 10
        initial_point = self.space.random_uniform(4)
        geodesic = self.metric.geodesic(initial_point=initial_point[:2],
                                        end_point=initial_point[2:])
        t = gs.linspace(start=0.0, stop=1.0, num=n_geodesic_points)
        points = geodesic(t)
        result = points[:, -1]
        expected = initial_point[2:]
        self.assertAllClose(expected, result)

    def test_inner_product(self):
        tangent_vec_a = gs.array([1.0, 0.0, 0.0, 0.0, 0.0])
        tangent_vec_b = gs.array([0.0, 1.0, 0.0, 0.0, 0.0])
        base_point = gs.array([0.0, 0.0, 0.0, 0.0, 1.0])
        result = self.metric.inner_product(tangent_vec_a, tangent_vec_b,
                                           base_point)
        expected = 0.0

        self.assertAllClose(expected, result)

    def test_inner_product_vectorization_single_samples(self):
        tangent_vec_a = gs.array([1.0, 0.0, 0.0, 0.0, 0.0])
        tangent_vec_b = gs.array([0.0, 1.0, 0.0, 0.0, 0.0])
        base_point = gs.array([0.0, 0.0, 0.0, 0.0, 1.0])

        result = self.metric.inner_product(tangent_vec_a, tangent_vec_b,
                                           base_point)
        expected = 0.0
        self.assertAllClose(expected, result)

        tangent_vec_a = gs.array([[1.0, 0.0, 0.0, 0.0, 0.0]])
        tangent_vec_b = gs.array([0.0, 1.0, 0.0, 0.0, 0.0])
        base_point = gs.array([0.0, 0.0, 0.0, 0.0, 1.0])

        result = self.metric.inner_product(tangent_vec_a, tangent_vec_b,
                                           base_point)
        expected = gs.array([0.0])
        self.assertAllClose(expected, result)

        tangent_vec_a = gs.array([1.0, 0.0, 0.0, 0.0, 0.0])
        tangent_vec_b = gs.array([[0.0, 1.0, 0.0, 0.0, 0.0]])
        base_point = gs.array([0.0, 0.0, 0.0, 0.0, 1.0])

        result = self.metric.inner_product(tangent_vec_a, tangent_vec_b,
                                           base_point)
        expected = gs.array([0.0])
        self.assertAllClose(expected, result)

        tangent_vec_a = gs.array([[1.0, 0.0, 0.0, 0.0, 0.0]])
        tangent_vec_b = gs.array([[0.0, 1.0, 0.0, 0.0, 0.0]])
        base_point = gs.array([0.0, 0.0, 0.0, 0.0, 1.0])

        result = self.metric.inner_product(tangent_vec_a, tangent_vec_b,
                                           base_point)
        expected = gs.array([0.0])
        self.assertAllClose(expected, result)

        tangent_vec_a = gs.array([[1.0, 0.0, 0.0, 0.0, 0.0]])
        tangent_vec_b = gs.array([[0.0, 1.0, 0.0, 0.0, 0.0]])
        base_point = gs.array([[0.0, 0.0, 0.0, 0.0, 1.0]])

        result = self.metric.inner_product(tangent_vec_a, tangent_vec_b,
                                           base_point)
        expected = gs.array([0.0])
        self.assertAllClose(expected, result)

    def test_diameter(self):
        dim = 2
        sphere = Hypersphere(dim)
        point_a = gs.array([[0.0, 0.0, 1.0]])
        point_b = gs.array([[1.0, 0.0, 0.0]])
        point_c = gs.array([[0.0, 0.0, -1.0]])
        result = sphere.metric.diameter(gs.vstack((point_a, point_b, point_c)))
        expected = gs.pi
        self.assertAllClose(expected, result)

    def test_closest_neighbor_index(self):
        """Check that the closest neighbor is one of neighbors."""
        n_samples = 10
        points = self.space.random_uniform(n_samples=n_samples)
        point = points[0, :]
        neighbors = points[1:, :]
        index = self.metric.closest_neighbor_index(point, neighbors)
        closest_neighbor = points[index, :]

        test = gs.sum(gs.all(points == closest_neighbor, axis=1))
        result = test > 0
        self.assertTrue(result)

    def test_sample_von_mises_fisher_arbitrary_mean(self):
        """
        Check that the maximum likelihood estimates of the mean and
        concentration parameter are close to the real values. A first
        estimation of the concentration parameter is obtained by a
        closed-form expression and improved through the Newton method.
        """
        for dim in [2, 9]:
            n_points = 10000
            sphere = Hypersphere(dim)

            # check mean value for concentrated distribution for different mean
            kappa = 1000.0
            mean = sphere.random_uniform()
            points = sphere.random_von_mises_fisher(mu=mean,
                                                    kappa=kappa,
                                                    n_samples=n_points)
            sum_points = gs.sum(points, axis=0)
            result = sum_points / gs.linalg.norm(sum_points)
            expected = mean
            self.assertAllClose(result, expected, atol=MEAN_ESTIMATION_TOL)

    def test_random_von_mises_kappa(self):
        # check concentration parameter for dispersed distribution
        kappa = 1.0
        n_points = 100000
        for dim in [2, 9]:
            sphere = Hypersphere(dim)
            points = sphere.random_von_mises_fisher(kappa=kappa,
                                                    n_samples=n_points)
            sum_points = gs.sum(points, axis=0)
            mean_norm = gs.linalg.norm(sum_points) / n_points
            kappa_estimate = (mean_norm * (dim + 1.0 - mean_norm**2) /
                              (1.0 - mean_norm**2))
            kappa_estimate = gs.cast(kappa_estimate, gs.float64)
            p = dim + 1
            n_steps = 100
            for _ in range(n_steps):
                bessel_func_1 = scipy.special.iv(p / 2.0, kappa_estimate)
                bessel_func_2 = scipy.special.iv(p / 2.0 - 1.0, kappa_estimate)
                ratio = bessel_func_1 / bessel_func_2
                denominator = 1.0 - ratio**2 - (p -
                                                1.0) * ratio / kappa_estimate
                mean_norm = gs.cast(mean_norm, gs.float64)
                kappa_estimate = kappa_estimate - (ratio -
                                                   mean_norm) / denominator
            result = kappa_estimate
            expected = kappa
            self.assertAllClose(result, expected, atol=KAPPA_ESTIMATION_TOL)

    def test_random_von_mises_general_dim_mean(self):
        for dim in [2, 9]:
            sphere = Hypersphere(dim)
            n_points = 100000

            # check mean value for concentrated distribution
            kappa = 10
            points = sphere.random_von_mises_fisher(kappa=kappa,
                                                    n_samples=n_points)
            sum_points = gs.sum(points, axis=0)
            expected = gs.array([1.0] + [0.0] * dim)
            result = sum_points / gs.linalg.norm(sum_points)
            self.assertAllClose(result, expected, atol=KAPPA_ESTIMATION_TOL)

    def test_random_von_mises_one_sample_belongs(self):
        for dim in [2, 9]:
            sphere = Hypersphere(dim)
            point = sphere.random_von_mises_fisher()
            self.assertAllClose(point.shape, (dim + 1, ))
            result = sphere.belongs(point)
            self.assertTrue(result)

    def test_spherical_to_extrinsic(self):
        """
        Check vectorization of conversion from spherical
        to extrinsic coordinates on the 2-sphere.
        """
        dim = 2
        sphere = Hypersphere(dim)

        points_spherical = gs.array([gs.pi / 2, 0])
        result = sphere.spherical_to_extrinsic(points_spherical)
        expected = gs.array([1.0, 0.0, 0.0])
        self.assertAllClose(result, expected)

    def test_extrinsic_to_spherical(self):
        """
        Check vectorization of conversion from spherical
        to extrinsic coordinates on the 2-sphere.
        """
        dim = 2
        sphere = Hypersphere(dim)

        points_extrinsic = gs.array([1.0, 0.0, 0.0])
        result = sphere.extrinsic_to_spherical(points_extrinsic)
        expected = gs.array([gs.pi / 2, 0])
        self.assertAllClose(result, expected)

    def test_spherical_to_extrinsic_vectorization(self):
        dim = 2
        sphere = Hypersphere(dim)
        points_spherical = gs.array([[gs.pi / 2, 0], [gs.pi / 6, gs.pi / 4]])
        result = sphere.spherical_to_extrinsic(points_spherical)
        expected = gs.array([
            [1.0, 0.0, 0.0],
            [gs.sqrt(2.0) / 4.0,
             gs.sqrt(2.0) / 4.0,
             gs.sqrt(3.0) / 2.0],
        ])
        self.assertAllClose(result, expected)

    def test_extrinsic_to_spherical_vectorization(self):
        dim = 2
        sphere = Hypersphere(dim)
        expected = gs.array([[gs.pi / 2, 0], [gs.pi / 6, gs.pi / 4]])
        point_extrinsic = gs.array([
            [1.0, 0.0, 0.0],
            [gs.sqrt(2.0) / 4.0,
             gs.sqrt(2.0) / 4.0,
             gs.sqrt(3.0) / 2.0],
        ])
        result = sphere.extrinsic_to_spherical(point_extrinsic)
        self.assertAllClose(result, expected)

    def test_spherical_to_extrinsic_and_inverse(self):
        dim = 2
        n_samples = 5
        sphere = Hypersphere(dim)
        points = gs.random.rand(n_samples, 2) * gs.pi * gs.array([1., 2.
                                                                  ])[None, :]
        extrinsic = sphere.spherical_to_extrinsic(points)
        result = sphere.extrinsic_to_spherical(extrinsic)
        self.assertAllClose(result, points)

        points_extrinsic = sphere.random_uniform(n_samples)
        spherical = sphere.extrinsic_to_spherical(points_extrinsic)
        result = sphere.spherical_to_extrinsic(spherical)
        self.assertAllClose(result, points_extrinsic)

    def test_tangent_spherical_to_extrinsic(self):
        """
        Check vectorization of conversion from spherical
        to extrinsic coordinates for tangent vectors to the
        2-sphere.
        """
        dim = 2
        sphere = Hypersphere(dim)
        base_points_spherical = gs.array([[gs.pi / 2, 0], [gs.pi / 2, 0]])
        tangent_vecs_spherical = gs.array([[0.25, 0.5], [0.3, 0.2]])
        result = sphere.tangent_spherical_to_extrinsic(tangent_vecs_spherical,
                                                       base_points_spherical)
        expected = gs.array([[0, 0.5, -0.25], [0, 0.2, -0.3]])
        self.assertAllClose(result, expected)

        result = sphere.tangent_spherical_to_extrinsic(
            tangent_vecs_spherical[0], base_points_spherical[0])
        self.assertAllClose(result, expected[0])

    def test_tangent_extrinsic_to_spherical(self):
        """
        Check vectorization of conversion from spherical
        to extrinsic coordinates for tangent vectors to the
        2-sphere.
        """
        dim = 2
        sphere = Hypersphere(dim)
        base_points_spherical = gs.array([[gs.pi / 2, 0], [gs.pi / 2, 0]])
        expected = gs.array([[0.25, 0.5], [0.3, 0.2]])
        tangent_vecs = gs.array([[0, 0.5, -0.25], [0, 0.2, -0.3]])
        result = sphere.tangent_extrinsic_to_spherical(
            tangent_vecs, base_point_spherical=base_points_spherical)
        self.assertAllClose(result, expected)

        result = sphere.tangent_extrinsic_to_spherical(tangent_vecs[0],
                                                       base_point=gs.array(
                                                           [1., 0., 0.]))
        self.assertAllClose(result, expected[0])

    def test_tangent_spherical_and_extrinsic_inverse(self):
        dim = 2
        n_samples = 5
        sphere = Hypersphere(dim)
        points = gs.random.rand(n_samples, 2) * gs.pi * gs.array([1., 2.
                                                                  ])[None, :]
        tangent_spherical = gs.random.rand(n_samples, 2)
        tangent_extrinsic = sphere.tangent_spherical_to_extrinsic(
            tangent_spherical, points)
        result = sphere.tangent_extrinsic_to_spherical(
            tangent_extrinsic, base_point_spherical=points)
        self.assertAllClose(result, tangent_spherical)

        points_extrinsic = sphere.random_uniform(n_samples)
        vector = gs.random.rand(n_samples, dim + 1)
        tangent_extrinsic = sphere.to_tangent(vector, points_extrinsic)
        tangent_spherical = sphere.tangent_extrinsic_to_spherical(
            tangent_extrinsic, base_point=points_extrinsic)
        spherical = sphere.extrinsic_to_spherical(points_extrinsic)
        result = sphere.tangent_spherical_to_extrinsic(tangent_spherical,
                                                       spherical)
        self.assertAllClose(result, tangent_extrinsic)

    def test_christoffels_vectorization(self):
        """
        Check vectorization of Christoffel symbols in
        spherical coordinates on the 2-sphere.
        """
        dim = 2
        sphere = Hypersphere(dim)
        points_spherical = gs.array([[gs.pi / 2, 0], [gs.pi / 6, gs.pi / 4]])
        christoffel = sphere.metric.christoffels(points_spherical)
        result = christoffel.shape
        expected = gs.array([2, dim, dim, dim])
        self.assertAllClose(result, expected)

    def test_parallel_transport_vectorization(self):
        sphere = Hypersphere(2)
        metric = sphere.metric
        shape = (4, 3)

        results = helper.test_parallel_transport(sphere, metric, shape)
        for res in results:
            self.assertTrue(res)

    def test_is_tangent(self):
        space = self.space
        vec = space.random_uniform()
        result = space.is_tangent(vec, vec)
        self.assertFalse(result)

        base_point = space.random_uniform()
        tangent_vec = space.to_tangent(vec, base_point)
        result = space.is_tangent(tangent_vec, base_point)
        self.assertTrue(result)

        base_point = space.random_uniform(2)
        vec = space.random_uniform(2)
        tangent_vec = space.to_tangent(vec, base_point)
        result = space.is_tangent(tangent_vec, base_point)
        self.assertAllClose(gs.shape(result), (2, ))
        self.assertTrue(gs.all(result))

    def test_sectional_curvature(self):
        n_samples = 4
        sphere = self.space
        base_point = sphere.random_uniform(n_samples)
        tan_vec_a = sphere.to_tangent(
            gs.random.rand(n_samples, sphere.dim + 1), base_point)
        tan_vec_b = sphere.to_tangent(
            gs.random.rand(n_samples, sphere.dim + 1), base_point)
        result = sphere.metric.sectional_curvature(tan_vec_a, tan_vec_b,
                                                   base_point)
        expected = gs.ones(result.shape)
        self.assertAllClose(result, expected)

    @geomstats.tests.np_autograd_and_torch_only
    def test_riemannian_normal_and_belongs(self):
        mean = self.space.random_uniform()
        cov = gs.eye(self.space.dim)
        sample = self.space.random_riemannian_normal(mean, cov, 10)
        result = self.space.belongs(sample)
        self.assertTrue(gs.all(result))

    @geomstats.tests.np_autograd_and_torch_only
    def test_riemannian_normal_mean(self):
        space = self.space
        mean = space.random_uniform()
        precision = gs.eye(space.dim) * 10
        sample = space.random_riemannian_normal(mean, precision, 10000)
        estimator = FrechetMean(space.metric, method="adaptive")
        estimator.fit(sample)
        estimate = estimator.estimate_
        self.assertAllClose(estimate, mean, atol=1e-2)

    def test_raises(self):
        space = self.space
        point = space.random_uniform()
        self.assertRaises(NotImplementedError,
                          lambda: space.extrinsic_to_spherical(point))

        self.assertRaises(
            NotImplementedError,
            lambda: space.tangent_extrinsic_to_spherical(point, point))

        sphere = Hypersphere(2)
        self.assertRaises(ValueError,
                          lambda: sphere.tangent_extrinsic_to_spherical(point))

    def test_angle_to_extrinsic(self):
        space = Hypersphere(1)
        point = gs.pi / 4
        result = space.angle_to_extrinsic(point)
        expected = gs.array([1., 1.]) / gs.sqrt(2.)
        self.assertAllClose(result, expected)

        point = gs.array([1. / 3, 0.]) * gs.pi
        result = space.angle_to_extrinsic(point)
        expected = gs.array([[1. / 2, gs.sqrt(3.) / 2], [1., 0.]])
        self.assertAllClose(result, expected)

    def test_extrinsic_to_angle(self):
        space = Hypersphere(1)
        point = gs.array([1., 1.]) / gs.sqrt(2.)
        result = space.extrinsic_to_angle(point)
        expected = gs.pi / 4
        self.assertAllClose(result, expected)

        point = gs.array([[1. / 2, gs.sqrt(3.) / 2], [1., 0.]])
        result = space.extrinsic_to_angle(point)
        expected = gs.array([1. / 3, 0.]) * gs.pi
        self.assertAllClose(result, expected)

    def test_extrinsic_to_angle_inverse(self):
        space = Hypersphere(1)
        point = space.random_uniform()
        angle = space.extrinsic_to_angle(point)
        result = space.angle_to_extrinsic(angle)
        self.assertAllClose(result, point)

        space = Hypersphere(1, default_coords_type='intrinsic')
        angle = space.random_uniform()
        extrinsic = space.angle_to_extrinsic(angle)
        result = space.extrinsic_to_angle(extrinsic)
        self.assertAllClose(result, angle)