Ejemplo n.º 1
0
 def test_inner_product_matrix_vector(self, default_point_type):
     euclidean = Euclidean(3)
     minkowski = Minkowski(3)
     space = ProductManifold(manifolds=[euclidean, minkowski])
     point = space.random_point(1)
     expected = gs.eye(6)
     expected[3, 3] = -1
     result = space.metric.metric_matrix(point)
     self.assertAllClose(result, expected)
Ejemplo n.º 2
0
    def setUp(self):
        gs.random.seed(1234)

        self.space_matrix = ProductManifold(
            manifolds=[Hypersphere(dim=2), Hyperboloid(dim=2)],
            default_point_type='matrix')
        self.space_vector = ProductManifold(
            manifolds=[Hypersphere(dim=2), Hyperboloid(dim=5)],
            default_point_type='vector')
Ejemplo n.º 3
0
 def test_inner_product_matrix_matrix(self):
     euclidean = Euclidean(3)
     minkowski = Minkowski(3)
     space = ProductManifold(manifolds=[euclidean, minkowski],
                             default_point_type='matrix')
     point = space.random_uniform(1)
     result = space.metric.inner_product_matrix(point)
     expected = gs.eye(6)
     expected[3, 3] = -1
     self.assertAllClose(result, expected)
Ejemplo n.º 4
0
    def setup_method(self):
        gs.random.seed(1234)

        self.space_matrix = ProductManifold(
            manifolds=[Hypersphere(dim=2), Hyperboloid(dim=2)],
            default_point_type="matrix",
        )
        self.space_vector = ProductManifold(
            manifolds=[Hypersphere(dim=2), Hyperboloid(dim=3)],
            default_point_type="vector",
        )
Ejemplo n.º 5
0
 def test_inner_product_matrix_matrix(self):
     space = ProductManifold(manifolds=[
         Hypersphere(dimension=2).embedding_manifold,
         Hyperbolic(dimension=2).embedding_manifold
     ],
                             default_point_type='matrix')
     point = space.random_uniform(1)
     result = space.metric.inner_product_matrix(point)
     expected = gs.identity(6)
     expected[3, 3] = -1
     self.assertAllClose(result, expected)
    def setUp(self):
        gs.random.seed(1234)

        self.sphere = Hypersphere(dimension=2)
        self.hyperbolic = Hyperbolic(dimension=5)

        self.space = ProductManifold(manifolds=[self.sphere, self.hyperbolic])
Ejemplo n.º 7
0
    def test_dist_log_then_exp_norm(self, manifolds, default_point_type,
                                    n_samples, einsum_str, expected):
        space = ProductManifold(manifolds=manifolds,
                                default_point_type=default_point_type)
        point = space.random_point(n_samples)
        base_point = space.random_point(n_samples)

        logs = space.metric.log(point, base_point)
        normalized_logs = gs.einsum(
            einsum_str,
            1.0 / space.metric.norm(logs, base_point),
            logs,
        )
        point = space.metric.exp(normalized_logs, base_point)
        result = space.metric.dist(point, base_point)
        self.assertAllClose(result, expected)
Ejemplo n.º 8
0
 def regularize_test_data(self):
     smoke_data = [
         dict(
             manifold=smoke_manifolds_1,
             default_point_type="vector",
             point=ProductManifold(
                 smoke_manifolds_1,
                 default_point_type="vector").random_point(5),
         ),
         dict(
             manifold=smoke_manifolds_1,
             default_point_type="matrix",
             point=ProductManifold(
                 smoke_manifolds_1,
                 default_point_type="matrix").random_point(5),
         ),
     ]
     return self.generate_tests(smoke_data)
Ejemplo n.º 9
0
 def inner_product_matrix_test_data(self):
     smoke_data = [
         dict(
             metric=smoke_metrics_2,
             default_point_type="vector",
             point=ProductManifold(
                 smoke_manifolds_1,
                 default_point_type="vector").random_point(5),
             base_point=ProductManifold(
                 smoke_manifolds_1,
                 default_point_type="vector").random_point(5),
         ),
         dict(
             manifold=smoke_metrics_2,
             default_point_type="matrix",
             point=ProductManifold(
                 smoke_manifolds_2,
                 default_point_type="matrix").random_point(5),
             base_point=ProductManifold(
                 smoke_manifolds_2,
                 default_point_type="matrix").random_point(5),
         ),
     ]
     return self.generate_tests(smoke_data)
Ejemplo n.º 10
0
class TestProductManifold(geomstats.tests.TestCase):
    def setup_method(self):
        gs.random.seed(1234)

        self.space_matrix = ProductManifold(
            manifolds=[Hypersphere(dim=2), Hyperboloid(dim=2)],
            default_point_type="matrix",
        )
        self.space_vector = ProductManifold(
            manifolds=[Hypersphere(dim=2), Hyperboloid(dim=3)],
            default_point_type="vector",
        )

    def test_dimension(self):
        expected = 5
        result = self.space_vector.dim
        self.assertAllClose(result, expected)

    def test_random_and_belongs_matrix(self):
        n_samples = 1
        data = self.space_matrix.random_point(n_samples)
        result = self.space_matrix.belongs(data)
        self.assertTrue(result)

        n_samples = 5
        data = self.space_matrix.random_point(n_samples)
        result = self.space_matrix.belongs(data)
        expected = gs.array([True] * n_samples)
        self.assertAllClose(result, expected)

    def test_random_and_belongs_vector(self):
        n_samples = 5
        data = self.space_vector.random_point(n_samples)
        result = self.space_vector.belongs(data)
        expected = gs.array([True] * n_samples)
        self.assertAllClose(result, expected)

    @geomstats.tests.np_and_autograd_only
    def test_exp_log_vector(self):
        n_samples = 5
        expected = self.space_vector.random_point(n_samples)
        base_point = self.space_vector.random_point(n_samples)
        logs = self.space_vector.metric.log(expected, base_point)
        result = self.space_vector.metric.exp(logs, base_point)
        self.assertAllClose(result, expected)

    @geomstats.tests.np_autograd_and_torch_only
    def test_exp_log_matrix(self):
        n_samples = 5
        expected = self.space_matrix.random_point(n_samples)
        base_point = self.space_matrix.random_point(n_samples)
        logs = self.space_matrix.metric.log(expected, base_point)
        result = self.space_matrix.metric.exp(logs, base_point)
        self.assertAllClose(result, expected, atol=1e-5)

    @geomstats.tests.np_and_autograd_only
    def test_dist_log_exp_norm_vector(self):
        n_samples = 5
        point = self.space_vector.random_point(n_samples)
        base_point = self.space_vector.random_point(n_samples)

        logs = self.space_vector.metric.log(point, base_point)
        normalized_logs = gs.einsum(
            "..., ...j->...j",
            1.0 / self.space_vector.metric.norm(logs, base_point),
            logs,
        )
        point = self.space_vector.metric.exp(normalized_logs, base_point)
        result = self.space_vector.metric.dist(point, base_point)

        expected = gs.ones(n_samples)
        self.assertAllClose(result, expected)

    @geomstats.tests.np_autograd_and_torch_only
    def test_dist_log_exp_norm_matrix(self):
        n_samples = 10
        point = self.space_matrix.random_point(n_samples)
        base_point = self.space_matrix.random_point(n_samples)
        logs = self.space_matrix.metric.log(point, base_point)
        normalized_logs = gs.einsum(
            "..., ...jl->...jl",
            1.0 / self.space_matrix.metric.norm(logs, base_point),
            logs,
        )
        point = self.space_matrix.metric.exp(normalized_logs, base_point)
        result = self.space_matrix.metric.dist(point, base_point)
        expected = gs.ones((n_samples,))
        self.assertAllClose(result, expected)

    @geomstats.tests.np_autograd_and_torch_only
    def test_inner_product_matrix_matrix(self):
        euclidean = Euclidean(3)
        minkowski = Minkowski(3)
        space = ProductManifold(
            manifolds=[euclidean, minkowski], default_point_type="matrix"
        )
        point = space.random_point(1)
        result = space.metric.metric_matrix(point)
        expected = gs.eye(6)
        expected[3, 3] = -1
        self.assertAllClose(result, expected)

    @geomstats.tests.np_autograd_and_torch_only
    def test_inner_product_matrix_vector(self):
        euclidean = Euclidean(3)
        minkowski = Minkowski(3)
        space = ProductManifold(
            manifolds=[euclidean, minkowski], default_point_type="vector"
        )
        point = space.random_point(1)
        expected = gs.eye(6)
        expected[3, 3] = -1
        result = space.metric.metric_matrix(point)
        self.assertAllClose(result, expected)

    def test_regularize_vector(self):
        expected = self.space_vector.random_point(5)
        result = self.space_vector.regularize(expected)
        self.assertAllClose(result, expected)

    def test_regularize_matrix(self):
        expected = self.space_matrix.random_point(5)
        result = self.space_matrix.regularize(expected)
        self.assertAllClose(result, expected)

    @geomstats.tests.np_autograd_and_torch_only
    def test_inner_product_matrix(self):
        n_samples = 1
        expected = self.space_matrix.random_point(n_samples)
        base_point = self.space_matrix.random_point(n_samples)
        logs = self.space_matrix.metric.log(expected, base_point)
        result = self.space_matrix.metric.inner_product(logs, logs)
        expected = self.space_matrix.metric.squared_dist(base_point, expected)
        self.assertAllClose(result, expected)

        n_samples = 5
        expected = self.space_matrix.random_point(n_samples)
        base_point = self.space_matrix.random_point(n_samples)
        logs = self.space_matrix.metric.log(expected, base_point)
        result = self.space_matrix.metric.inner_product(logs, logs)
        expected = self.space_matrix.metric.squared_dist(base_point, expected)
        self.assertAllClose(result, expected)

    @geomstats.tests.np_autograd_and_torch_only
    def test_projection_and_belongs_vector(self):
        space = self.space_vector
        shape = (2, space.dim + 2)
        result = helper.test_projection_and_belongs(space, shape, atol=gs.atol * 100)
        for res in result:
            self.assertTrue(res)

    @geomstats.tests.np_autograd_and_torch_only
    def test_projection_and_belongs_matrix(self):
        space = self.space_matrix
        shape = (2, len(space.manifolds), space.manifolds[0].dim + 1)
        result = helper.test_projection_and_belongs(space, shape, atol=gs.atol * 100)
        for res in result:
            self.assertTrue(res)

    def test_to_tangent_is_tangent_vector(self):
        space = self.space_vector
        result = helper.test_to_tangent_is_tangent(space, atol=gs.atol)
        for res in result:
            self.assertTrue(res)

    def test_to_tangent_is_tangent_matrix(self):
        space = self.space_matrix
        result = helper.test_to_tangent_is_tangent(space, atol=gs.atol)
        for res in result:
            self.assertTrue(res)
Ejemplo n.º 11
0
class TestProductManifold(geomstats.tests.TestCase):
    def setUp(self):
        gs.random.seed(1234)

        self.space_matrix = ProductManifold(
            manifolds=[Hypersphere(dim=2),
                       Hyperboloid(dim=2)],
            default_point_type='matrix')
        self.space_vector = ProductManifold(
            manifolds=[Hypersphere(dim=2),
                       Hyperboloid(dim=5)],
            default_point_type='vector')

    def test_dimension(self):
        expected = 7
        result = self.space_vector.dim
        self.assertAllClose(result, expected)

    def test_random_and_belongs_matrix(self):
        n_samples = 1
        data = self.space_matrix.random_point(n_samples)
        result = self.space_matrix.belongs(data)
        self.assertTrue(result)

        n_samples = 5
        data = self.space_matrix.random_point(n_samples)
        result = self.space_matrix.belongs(data)
        expected = gs.array([True] * n_samples)
        self.assertAllClose(result, expected)

    def test_random_and_belongs_vector(self):
        n_samples = 5
        data = self.space_vector.random_point(n_samples)
        result = self.space_vector.belongs(data)
        expected = gs.array([True] * n_samples)
        self.assertAllClose(result, expected)

    @geomstats.tests.np_only
    def test_exp_log_vector(self):
        n_samples = 5
        expected = self.space_vector.random_point(n_samples)
        base_point = self.space_vector.random_point(n_samples)
        logs = self.space_vector.metric.log(expected, base_point)
        result = self.space_vector.metric.exp(logs, base_point)
        self.assertAllClose(result, expected)

    @geomstats.tests.np_and_pytorch_only
    def test_exp_log_matrix(self):
        n_samples = 5
        expected = self.space_matrix.random_point(n_samples)
        base_point = self.space_matrix.random_point(n_samples)
        logs = self.space_matrix.metric.log(expected, base_point)
        result = self.space_matrix.metric.exp(logs, base_point)
        self.assertAllClose(result, expected, atol=1e-5)

    @geomstats.tests.np_only
    def test_dist_log_exp_norm_vector(self):
        n_samples = 5
        point = self.space_vector.random_point(n_samples)
        base_point = self.space_vector.random_point(n_samples)

        logs = self.space_vector.metric.log(point, base_point)
        normalized_logs = gs.einsum(
            '..., ...j->...j',
            1. / self.space_vector.metric.norm(logs, base_point), logs)
        point = self.space_vector.metric.exp(normalized_logs, base_point)
        result = self.space_vector.metric.dist(point, base_point)

        expected = gs.ones(n_samples)
        self.assertAllClose(result, expected)

    @geomstats.tests.np_and_pytorch_only
    def test_dist_log_exp_norm_matrix(self):
        n_samples = 10
        point = self.space_matrix.random_point(n_samples)
        base_point = self.space_matrix.random_point(n_samples)
        logs = self.space_matrix.metric.log(point, base_point)
        normalized_logs = gs.einsum(
            '..., ...jl->...jl',
            1. / self.space_matrix.metric.norm(logs, base_point), logs)
        point = self.space_matrix.metric.exp(normalized_logs, base_point)
        result = self.space_matrix.metric.dist(point, base_point)
        expected = gs.ones((n_samples, ))
        self.assertAllClose(result, expected)

    @geomstats.tests.np_and_pytorch_only
    def test_inner_product_matrix_matrix(self):
        euclidean = Euclidean(3)
        minkowski = Minkowski(3)
        space = ProductManifold(manifolds=[euclidean, minkowski],
                                default_point_type='matrix')
        point = space.random_point(1)
        result = space.metric.metric_matrix(point)
        expected = gs.eye(6)
        expected[3, 3] = -1
        self.assertAllClose(result, expected)

    @geomstats.tests.np_only
    def test_inner_product_matrix_vector(self):
        euclidean = Euclidean(3)
        minkowski = Minkowski(3)
        space = ProductManifold(manifolds=[euclidean, minkowski],
                                default_point_type='vector')
        point = space.random_point(1)
        expected = gs.eye(6)
        expected[3, 3] = -1
        result = space.metric.metric_matrix(point)
        self.assertAllClose(result, expected)

    @geomstats.tests.np_only
    def test_regularize_vector(self):
        expected = self.space_vector.random_point(5)
        result = self.space_vector.regularize(expected)
        self.assertAllClose(result, expected)

    @geomstats.tests.np_and_pytorch_only
    def test_regularize_matrix(self):
        expected = self.space_matrix.random_point(5)
        result = self.space_matrix.regularize(expected)
        self.assertAllClose(result, expected)

    @geomstats.tests.np_and_pytorch_only
    def test_inner_product_matrix(self):
        n_samples = 1
        expected = self.space_matrix.random_point(n_samples)
        base_point = self.space_matrix.random_point(n_samples)
        logs = self.space_matrix.metric.log(expected, base_point)
        result = self.space_matrix.metric.inner_product(logs, logs)
        expected = self.space_matrix.metric.squared_dist(base_point, expected)
        self.assertAllClose(result, expected)

        n_samples = 5
        expected = self.space_matrix.random_point(n_samples)
        base_point = self.space_matrix.random_point(n_samples)
        logs = self.space_matrix.metric.log(expected, base_point)
        result = self.space_matrix.metric.inner_product(logs, logs)
        expected = self.space_matrix.metric.squared_dist(base_point, expected)
        self.assertAllClose(result, expected)
Ejemplo n.º 12
0
class TestProductManifoldMethods(geomstats.tests.TestCase):
    def setUp(self):
        gs.random.seed(1234)

        self.space_matrix = ProductManifold(
            manifolds=[Hypersphere(dimension=2),
                       Hyperbolic(dimension=2)],
            default_point_type='matrix')
        self.space_vector = ProductManifold(
            manifolds=[Hypersphere(dimension=2),
                       Hyperbolic(dimension=5)],
            default_point_type='vector')

    def test_dimension(self):
        expected = 7
        result = self.space_vector.dimension
        self.assertAllClose(result, expected)

    @geomstats.tests.np_and_pytorch_only
    def test_random_and_belongs_matrix(self):
        n_samples = 5
        data = self.space_matrix.random_uniform(n_samples)
        result = self.space_matrix.belongs(data)
        expected = gs.array([[True] * n_samples]).transpose(1, 0)
        self.assertAllClose(result, expected)

    @geomstats.tests.np_only
    def test_random_and_belongs_vector(self):
        n_samples = 5
        data = self.space_vector.random_uniform(n_samples)
        result = self.space_vector.belongs(data)
        expected = gs.array([[True] * n_samples]).transpose(1, 0)
        self.assertAllClose(result, expected)

    @geomstats.tests.np_only
    def test_exp_log_vector(self):
        n_samples = 5
        expected = self.space_vector.random_uniform(n_samples)
        base_point = self.space_vector.random_uniform(n_samples)
        logs = self.space_vector.metric.log(expected, base_point)
        result = self.space_vector.metric.exp(logs, base_point)
        self.assertAllClose(result, expected)

    @geomstats.tests.np_and_pytorch_only
    def test_exp_log_matrix(self):
        n_samples = 5
        expected = self.space_matrix.random_uniform(n_samples)
        base_point = self.space_matrix.random_uniform(n_samples)
        logs = self.space_matrix.metric.log(expected, base_point)
        result = self.space_matrix.metric.exp(logs, base_point)
        self.assertAllClose(result, expected)

    @geomstats.tests.np_only
    def test_dist_vector(self):
        n_samples = 5
        point = self.space_vector.random_uniform(n_samples)
        base_point = self.space_vector.random_uniform(n_samples)
        logs = self.space_vector.metric.log(point, base_point)
        logs = gs.einsum('..., ...j->...j',
                         1. / self.space_vector.metric.norm(logs, base_point),
                         logs)
        point = self.space_vector.metric.exp(logs, base_point)
        result = self.space_vector.metric.dist(point, base_point)
        expected = gs.ones(n_samples)
        self.assertAllClose(result, expected)

    @geomstats.tests.np_and_pytorch_only
    def test_dist_matrix(self):
        n_samples = 5
        point = self.space_matrix.random_uniform(n_samples)
        base_point = self.space_matrix.random_uniform(n_samples)
        logs = self.space_matrix.metric.log(point, base_point)
        logs = gs.einsum('..., ...j->...j',
                         1. / self.space_matrix.metric.norm(logs, base_point),
                         logs)
        point = self.space_matrix.metric.exp(logs, base_point)
        result = self.space_matrix.metric.dist(point, base_point)
        expected = gs.ones((n_samples, 1))
        self.assertAllClose(result, expected)

    @geomstats.tests.np_and_pytorch_only
    def test_inner_product_matrix_matrix(self):
        space = ProductManifold(manifolds=[
            Hypersphere(dimension=2).embedding_manifold,
            Hyperbolic(dimension=2).embedding_manifold
        ],
                                default_point_type='matrix')
        point = space.random_uniform(1)
        result = space.metric.inner_product_matrix(point)
        expected = gs.identity(6)
        expected[3, 3] = -1
        self.assertAllClose(result, expected)

    @geomstats.tests.np_only
    def test_inner_product_matrix_vector(self):
        space = ProductManifold(manifolds=[
            Hypersphere(dimension=2).embedding_manifold,
            Hyperbolic(dimension=2).embedding_manifold
        ],
                                default_point_type='vector')
        point = space.random_uniform(1)
        expected = gs.identity(6)
        expected[3, 3] = -1
        result = space.metric.inner_product_matrix(point)
        self.assertAllClose(result, expected)

    @geomstats.tests.np_only
    def test_regularize_vector(self):
        expected = self.space_vector.random_uniform(5)
        result = self.space_vector.regularize(expected)
        self.assertAllClose(result, expected)

    @geomstats.tests.np_and_pytorch_only
    def test_regularize_matrix(self):
        expected = self.space_matrix.random_uniform(5)
        result = self.space_matrix.regularize(expected)
        self.assertAllClose(result, expected)
Ejemplo n.º 13
0
    class ProductRiemannianMetricTestData(_RiemannianMetricTestData):
        n_list = random.sample(range(2, 3), 1)
        default_point_list = ["vector", "matrix"]
        manifolds_list = [[Hypersphere(dim=n),
                           Hyperboloid(dim=n)] for n in n_list]
        metrics_list = [[Hypersphere(dim=n).metric,
                         Hyperboloid(dim=n).metric] for n in n_list]
        metric_args_list = list(zip(metrics_list, default_point_list))
        shape_list = [(n + 1, n + 1) if default_point == "matrix" else
                      (2 * (n + 1), )
                      for n, default_point in zip(n_list, default_point_list)]
        space_list = [
            ProductManifold(manifolds, None, default_point_type) for manifolds,
            default_point_type in zip(manifolds_list, default_point_list)
        ]
        n_points_list = random.sample(range(2, 5), 1)
        n_tangent_vecs_list = random.sample(range(2, 5), 1)
        n_points_a_list = random.sample(range(2, 5), 1)
        n_points_b_list = [1]
        alpha_list = [1] * 1
        n_rungs_list = [1] * 1
        scheme_list = ["pole"] * 1

        def inner_product_matrix_test_data(self):
            smoke_data = [
                dict(
                    metric=smoke_metrics_2,
                    default_point_type="vector",
                    point=ProductManifold(
                        smoke_manifolds_1,
                        default_point_type="vector").random_point(5),
                    base_point=ProductManifold(
                        smoke_manifolds_1,
                        default_point_type="vector").random_point(5),
                ),
                dict(
                    manifold=smoke_metrics_2,
                    default_point_type="matrix",
                    point=ProductManifold(
                        smoke_manifolds_2,
                        default_point_type="matrix").random_point(5),
                    base_point=ProductManifold(
                        smoke_manifolds_2,
                        default_point_type="matrix").random_point(5),
                ),
            ]
            return self.generate_tests(smoke_data)

        def exp_shape_test_data(self):
            return self._exp_shape_test_data(self.metric_args_list,
                                             self.space_list, self.shape_list)

        def log_shape_test_data(self):
            return self._log_shape_test_data(self.metric_args_list,
                                             self.space_list)

        def squared_dist_is_symmetric_test_data(self):
            return self._squared_dist_is_symmetric_test_data(
                self.metric_args_list,
                self.space_list,
                self.n_points_a_list,
                self.n_points_b_list,
                atol=gs.atol * 1000,
            )

        def exp_belongs_test_data(self):
            return self._exp_belongs_test_data(
                self.metric_args_list,
                self.space_list,
                self.shape_list,
                self.n_tangent_vecs_list,
                belongs_atol=gs.atol * 1000,
            )

        def log_is_tangent_test_data(self):
            return self._log_is_tangent_test_data(
                self.metric_args_list,
                self.space_list,
                self.n_points_list,
                is_tangent_atol=1e-1,
            )

        def geodesic_ivp_belongs_test_data(self):
            return self._geodesic_ivp_belongs_test_data(
                self.metric_args_list,
                self.space_list,
                self.shape_list,
                self.n_points_list,
                belongs_atol=gs.atol * 1000,
            )

        def geodesic_bvp_belongs_test_data(self):
            return self._geodesic_bvp_belongs_test_data(
                self.metric_args_list,
                self.space_list,
                self.n_points_list,
                belongs_atol=gs.atol * 1000,
            )

        def log_then_exp_test_data(self):
            return self._log_then_exp_test_data(
                self.metric_args_list,
                self.space_list,
                self.n_points_list,
                rtol=gs.rtol * 1000,
                atol=1e-1,
            )

        def exp_then_log_test_data(self):
            return self._exp_then_log_test_data(
                self.metric_args_list,
                self.space_list,
                self.shape_list,
                self.n_tangent_vecs_list,
                amplitude=10,
                rtol=gs.rtol * 1000,
                atol=1e-1,
            )

        def exp_ladder_parallel_transport_test_data(self):
            return self._exp_ladder_parallel_transport_test_data(
                self.metric_args_list,
                self.space_list,
                self.shape_list,
                self.n_tangent_vecs_list,
                self.n_rungs_list,
                self.alpha_list,
                self.scheme_list,
            )

        def exp_geodesic_ivp_test_data(self):
            return self._exp_geodesic_ivp_test_data(
                self.metric_args_list,
                self.space_list,
                self.shape_list,
                self.n_tangent_vecs_list,
                self.n_points_list,
                rtol=gs.rtol * 100000,
                atol=gs.atol * 100000,
            )

        def parallel_transport_ivp_is_isometry_test_data(self):
            return self._parallel_transport_ivp_is_isometry_test_data(
                self.metric_args_list,
                self.space_list,
                self.shape_list,
                self.n_tangent_vecs_list,
                is_tangent_atol=gs.atol * 1000,
                atol=gs.atol * 1000,
            )

        def parallel_transport_bvp_is_isometry_test_data(self):
            return self._parallel_transport_bvp_is_isometry_test_data(
                self.metric_args_list,
                self.space_list,
                self.shape_list,
                self.n_tangent_vecs_list,
                is_tangent_atol=gs.atol * 1000,
                atol=gs.atol * 1000,
            )

        def dist_is_symmetric_test_data(self):
            return self._dist_is_symmetric_test_data(
                self.metric_args_list,
                self.space_list,
                self.n_points_a_list,
                self.n_points_b_list,
            )

        def dist_is_positive_test_data(self):
            return self._dist_is_positive_test_data(
                self.metric_args_list,
                self.space_list,
                self.n_points_a_list,
                self.n_points_b_list,
            )

        def squared_dist_is_positive_test_data(self):
            return self._squared_dist_is_positive_test_data(
                self.metric_args_list,
                self.space_list,
                self.n_points_a_list,
                self.n_points_b_list,
            )

        def dist_is_norm_of_log_test_data(self):
            return self._dist_is_norm_of_log_test_data(
                self.metric_args_list,
                self.space_list,
                self.n_points_a_list,
                self.n_points_b_list,
            )

        def dist_point_to_itself_is_zero_test_data(self):
            return self._dist_point_to_itself_is_zero_test_data(
                self.metric_args_list, self.space_list, self.n_points_list)

        def inner_product_is_symmetric_test_data(self):
            return self._inner_product_is_symmetric_test_data(
                self.metric_args_list,
                self.space_list,
                self.shape_list,
                self.n_tangent_vecs_list,
            )

        def inner_product_matrix_vector_test_data(self):
            random_data = [
                dict(default_point_type="matrix"),
                dict(default_point_type="vector"),
            ]
            return self.generate_tests([], random_data)

        def dist_log_then_exp_norm_test_data(self):
            smoke_data = [
                dict(
                    space=smoke_manifolds_1,
                    default_point_type="vector",
                    n_samples=10,
                    einsum_str="..., ...j->...j",
                    expected=gs.ones(10),
                ),
                dict(
                    space=smoke_manifolds_1,
                    default_point_type="matrix",
                    n_samples=10,
                    einsum_str="..., ...jl->...jl",
                    expected=gs.ones(10, ),
                ),
            ]
            return self.generate_tests(smoke_data)