Ejemplo n.º 1
0
 def test_plot_points_h2_poincare_disk(self):
     points = self.H2.random_uniform(self.n_samples)
     visualization.plot(points, space='H2_poincare_disk')
Ejemplo n.º 2
0
 def test_plot_points_s2(self):
     points = self.S2.random_uniform(self.n_samples)
     visualization.plot(points, space='S2')
Ejemplo n.º 3
0
        x = torch.from_numpy(x).reshape((1, 3, 32, 32)).float()
        with torch.no_grad():
            x = net(x)
        return entropy_loss(x, torch.zeros(1, dtype=torch.long))

    fig = plt.figure(figsize=(10, 10))
    ax = fig.add_subplot(111, projection='3d')
    sphere = Sphere()

    # f_points = sphere.fibonnaci_points(10000).swapaxes(0, 1)
    # tf_points = transformer.transform(f_points, base_point)
    #
    # print(tf_points[:, 0].min(), tf_points[:, 0].max())
    # print(tf_points[:, 1].min(), tf_points[:, 1].max())
    # print(tf_points[:, 2].min(), tf_points[:, 2].max())

    sphere.plot_heatmap(ax=ax, n_points=10000, scalar_function=loss_f)
    correct_points = points[labels == 0]
    correct_labels = labels[labels == 0]
    wrong_points = points[labels != 0]
    wrong_labels = labels[labels != 0]
    plot_points = np.concatenate((correct_points[:100], wrong_points[:100]))
    plot_labels = np.concatenate((correct_labels[:100], wrong_labels[:100]))
    visualization.plot(plot_points,
                       ax=ax,
                       space='S2',
                       c=plot_labels == 0,
                       s=80,
                       alpha=0.5)
    plt.show()
Ejemplo n.º 4
0
 def test_plot_points_se3(self):
     points = self.SE3_GROUP.random_uniform(self.n_samples)
     visualization.plot(points, space='SE3_GROUP')
Ejemplo n.º 5
0
def main():
    """Perform tangent PCA at the mean."""
    fig = plt.figure(figsize=(15, 5))

    hyperbolic_plane = Hyperbolic(dimension=2)

    data = hyperbolic_plane.random_uniform(n_samples=140)

    mean = FrechetMean(metric=hyperbolic_plane.metric)
    mean.fit(data)

    mean_estimate = mean.estimate_

    tpca = TangentPCA(metric=hyperbolic_plane.metric, n_components=2)
    tpca = tpca.fit(data, base_point=mean_estimate)
    tangent_projected_data = tpca.transform(data)

    geodesic_0 = hyperbolic_plane.metric.geodesic(
        initial_point=mean_estimate, initial_tangent_vec=tpca.components_[0])
    geodesic_1 = hyperbolic_plane.metric.geodesic(
        initial_point=mean_estimate, initial_tangent_vec=tpca.components_[1])

    n_steps = 100
    t = np.linspace(-1, 1, n_steps)
    geodesic_points_0 = geodesic_0(t)
    geodesic_points_1 = geodesic_1(t)

    print('Coordinates of the Log of the first 5 data points at the mean, '
          'projected on the principal components:')
    print(tangent_projected_data[:5])

    ax_var = fig.add_subplot(121)
    xticks = np.arange(1, 2 + 1, 1)
    ax_var.xaxis.set_ticks(xticks)
    ax_var.set_title('Explained variance')
    ax_var.set_xlabel('Number of Principal Components')
    ax_var.set_ylim((0, 1))
    ax_var.plot(xticks, tpca.explained_variance_ratio_)

    ax = fig.add_subplot(122)

    visualization.plot(mean_estimate,
                       ax,
                       space='H2_poincare_disk',
                       color='darkgreen',
                       s=10)
    visualization.plot(geodesic_points_0,
                       ax,
                       space='H2_poincare_disk',
                       linewidth=2)
    visualization.plot(geodesic_points_1,
                       ax,
                       space='H2_poincare_disk',
                       linewidth=2)
    visualization.plot(data,
                       ax,
                       space='H2_poincare_disk',
                       color='black',
                       alpha=0.7)

    plt.show()