Ejemplo n.º 1
0
def test_extract():
    import georasters as gr
    raster = os.path.join(DATA, 'pre1500.tif')
    data = gr.from_file(raster)
    (xmin,xsize,x,ymax,y,ysize)=data.geot
    (x,y)=(xmin+2507*xsize, ymax+1425*ysize)
    assert data.raster[gr.map_pixel(x,y,data.x_cell_size,data.y_cell_size,data.xmin,data.ymax)]==data.extract(x,y).max()
    assert data.raster[gr.map_pixel(x,y,data.x_cell_size,data.y_cell_size,data.xmin,data.ymax)]==data.map_pixel(x,y)
Ejemplo n.º 2
0
def test_extract():
    import georasters as gr
    raster = os.path.join(DATA, 'pre1500.tif')
    data = gr.from_file(raster)
    (xmin, xsize, x, ymax, y, ysize) = data.geot
    (x, y) = (xmin + 2507 * xsize, ymax + 1425 * ysize)
    assert data.raster[gr.map_pixel(x, y, data.x_cell_size, data.y_cell_size,
                                    data.xmin,
                                    data.ymax)] == data.extract(x, y).max()
    assert data.raster[gr.map_pixel(x, y, data.x_cell_size, data.y_cell_size,
                                    data.xmin,
                                    data.ymax)] == data.map_pixel(x, y)
Ejemplo n.º 3
0
 def lu_extract(row):
     try:
         c, r = gr.map_pixel(row['gpsLongitude'], row['gpsLatitude'], GeoT[1], GeoT[-1], GeoT[0], GeoT[3])
         lu = esa[c, r]
         return lu
     except IndexError:
         print('coordinates {} {} at sea!'.format(row['gpsLongitude'], row['gpsLatitude']))
Ejemplo n.º 4
0
    def lu_extract(row):

        try:
            c, r = gr.map_pixel(row[lon_col], row[lat_col], GeoT[1], GeoT[-1], GeoT[0], GeoT[3])
            lu = pop[c, r]
            return lu

        except IndexError:
            pass
Ejemplo n.º 5
0
def gps2pixel(points_coord, geot):
    # transform gps coordinate to pixel
    return np.flip(np.vstack(gr.map_pixel(points_coord[:,0], points_coord[:,1],geot[1],geot[-1], geot[0],geot[3])).T,1)
Ejemplo n.º 6
0
def watershed(flow_dir_file, lake_data, val=47):
    """
    __orig_author__ =  Rdebbout
    
    Description
    ----------
    given a flow direction grid, develop tif representing lake watershed

    Parameters
    ----------
    flow_dir_file : grid file representing flow direction.  DIR file within HydroSHEDS
        
    lake_data   : object representing lake information including id and pour point lat/lon

    val : value to set watershed cells 

    Output
    ---------
    tif file of a lake's watershed including value attribute table
    
    """

    #get information about original flow direction raster
    #NDV = no data values    , xysize= raster size , tf = geotransform
    NDV, xsize, ysize, tf, Projection, DataType = gr.get_geo_info(
        flow_dir_file)
    #print (tf)

    #load into georaster from source file
    arr = gr.from_file(flow_dir_file)
    (xmin, xsize, x, ymax, y, ysize) = arr.geot

    #get pour point lon and lat from lake object
    pp_lon, pp_lat = lake_data.pour_pt_lon, lake_data.pour_pt_lat

    # Function to map location in pixel of raster array: https://github.com/ozak/georasters/blob/master/georasters/georasters.py
    here = gr.map_pixel(pp_lon, pp_lat, xsize, ysize, xmin, ymax)
    init = []
    init = ring_cells(here)

    hold = []
    temp_hold = eval_ring(init, arr)
    hold = temp_hold

    #Altered this to deal with an issue when iterating across multiple lakes in original code
    #for every cell in ring evaluate if it is flowing to the pour point, if so add it to the hold, temp_hold continues until exhausted
    while len(temp_hold) > 0:
        for h in temp_hold:
            init = ring_cells(h)
            temp_hold = eval_ring(init, arr)
            hold += temp_hold

    #Add target cell
    hold.append(here)
    hold = list(set(hold))

    # try to update transform info(tf) and shrink array
    dd = np.array(hold)
    r_min, col_min = np.amin(dd, axis=0)
    r_max, col_max = np.amax(dd, axis=0)

    #added step for WGS84 data that is not projected
    lon, lat = gr.map_pixel_inv(r_min, col_min, tf[1], tf[-1], tf[0], tf[3])

    # shift transform to reduce NoData in the output raster
    shifted_tf = (lon, tf[1], tf[2], lat, tf[4], tf[5])

    # insert val into the cells of the raster that represent watershed
    out = np.zeros(arr.shape)
    for idx in hold:
        out[idx] = val

    #plus 1 deals with index starting at 0,  these are counts of rows, columns
    new = out[r_min:(r_max + 1), col_min:(col_max + 1)]

    go = gr.GeoRaster(new, shifted_tf, 0)
    go.projection = Projection
    go.datatype = DataType

    #Set name of files and create
    lk_id = str(lake_data.id)

    #create tif file
    go.to_tiff(f"output/lkshed/{lk_id}_watershed")
    df = make_rat(f"output/lkshed/{lk_id}_watershed.tif")
    #export value attribute table
    df2dbf(df, f"output/lkshed/{lk_id}_watershed.tif.vat.dbf")

    # #cleanup to help take care of issues on iterative processing
    # arr = 0
    go = None
    here = None
    arr = None
    out = None
    new = None
    dd = None
    shifted_tf = None
    gc.collect()
Ejemplo n.º 7
0
def map_indexes_geot(geot, point_x, point_y):
    row, col = gr.map_pixel(point_x, point_y,
                            geot[1], geot[-1], geot[0], geot[3])
    return row, col
Ejemplo n.º 8
0
def map_indexes(raster, point_x, point_y):
    row, col = gr.map_pixel(point_x, point_y,
                         raster.x_cell_size, raster.y_cell_size, raster.xmin, raster.ymax)
    return row, col