Ejemplo n.º 1
0
def distance_2p(p1, p2):
    """Returns the euclidean distance between two points
       arg keywords:
          p1 - a vector
          p2 - a vector
       returns: a number
    """
    return norm(p2 - p1)
Ejemplo n.º 2
0
def make_hcs_2d_scaled(a, b):
    """build a 2D homogeneus coordiate system from two vectors, but scale with distance between input point"""
    u = b - a
    if tol_eq(norm(u), 0.0):  # 2006/6/30
        return None
    #else:
    #    u = u / norm(u)
    v = vector([-u[1], u[0]])
    hcs = matrix_factory([[u[0], v[0], a[0]], [u[1], v[1], a[1]],
                          [0.0, 0.0, 1.0]])
    return hcs
Ejemplo n.º 3
0
def test_rr_int():
    """test random ray-ray intersection. returns True iff succesful"""
    # generate tree points A,B,C an two rays AC, BC.
    # then calculate the intersection of the two rays
    # and check that it equals C
    p_a = randvec(2, 0.0, 10.0, 1.0)
    p_b = randvec(2, 0.0, 10.0, 1.0)
    p_c = randvec(2, 0.0, 10.0, 1.0)
    # print p_a, p_b, p_c
    if tol_eq(norm(p_c - p_a), 0) or tol_eq(norm(p_c - p_b), 0):
        return True  # ignore this case
    v_ac = (p_c - p_a) / norm(p_c - p_a)
    v_bc = (p_c - p_b) / norm(p_c - p_b)
    s = rr_int(p_a, v_ac, p_b, v_bc)
    if tol_eq(math.fabs(dot(v_ac, v_bc)), 1.0):
        return len(s) == 0
    else:
        if len(s) > 0:
            p_s = s[0]
            return tol_eq(p_s[0], p_c[0]) and tol_eq(p_s[1], p_c[1])
        else:
            return False
Ejemplo n.º 4
0
 def _merge_transform_2D(self, other):
     """returns a new configurations which is this one plus the given other configuration transformed, such that common points will overlap (if possible)."""
     shared = Set(self.vars()).intersection(other.vars())
     underconstrained = self.underconstrained or other.underconstrained
     if len(shared) == 0:
         underconstrained = True
         cs1 = make_hcs_2d(vector([0.0, 0.0]), vector([1.0, 0.0]))
         cs2 = make_hcs_2d(vector([0.0, 0.0]), vector([1.0, 0.0]))
     elif len(shared) == 1:
         if len(self.vars()) > 1 and len(other.vars()) > 1:
             underconstrained = True
         v1 = list(shared)[0]
         p11 = self.map[v1]
         p21 = other.map[v1]
         cs1 = make_hcs_2d(p11, p11 + vector([1.0, 0.0]))
         cs2 = make_hcs_2d(p21, p21 + vector([1.0, 0.0]))
     else:  # len(shared) >= 2:
         v1 = list(shared)[0]
         v2 = list(shared)[1]
         p11 = self.map[v1]
         p12 = self.map[v2]
         if tol_eq(norm(p12 - p11), 0.0):
             underconstrained = True
             cs1 = make_hcs_2d(p11, p11 + vector[1.0, 0.0])
         else:
             cs1 = make_hcs_2d(p11, p12)
         p21 = other.map[v1]
         p22 = other.map[v2]
         if tol_eq(norm(p22 - p21), 0.0):
             underconstrained = True
             cs2 = make_hcs_2d(p21, p21 + vector[1.0, 0.0])
         else:
             cs2 = make_hcs_2d(p21, p22)
     # in any case
     t = cs_transform_matrix(cs2, cs1)
     t.underconstrained = underconstrained
     return t
Ejemplo n.º 5
0
 def _merge_scale_transform_3D(self, other):
     shared = set(self.vars()).intersection(other.vars())
     if len(shared) == 0:
         return self._merge_transform_3D(other)
     elif len(shared) == 1:
         return self._merge_transform_3D(other)
     elif len(shared) >= 2:
         v1 = list(shared)[0]
         p1s = self.map[v1]
         p1o = other.map[v1]
         v2 = list(shared)[1]
         p2s = self.map[v2]
         p2o = other.map[v2]
         scale = norm(p2s - p1s) / norm(p2o - p1o)
         scale_trans = pivot_scale_3D(p1o, scale)
         diag_print("scale_trans = " + str(scale_trans),
                    "Configuration.merge_scale_transform_3D")
         merge_trans = self._merge_transform_3D(other)
         diag_print("merge_trans = " + str(merge_trans),
                    "Configuration.merge_scale_transform_3D")
         # merge_scale_trans = scale_trans.mmul(merge_trans)
         merge_scale_trans = merge_trans.mmul(scale_trans)
         merge_scale_trans.underconstrained = merge_trans.underconstrained
         return merge_scale_trans
Ejemplo n.º 6
0
def make_hcs_3d_scaled(a, b, c):
    """build a 3D homogeneus coordiate system from three vectors"""
    # create orthnormal basis
    u = b - a
    u = u / norm(u)
    v = c - a
    v = v / norm(v)
    w = cross(u, v)
    v = cross(w, u)
    # scale
    u = u / norm(u) / norm(b - a)
    v = v / norm(v) / norm(c - a)
    hcs = matrix_factory([[u[0], v[0], w[0], a[0]], [u[1], v[1], w[1], a[1]],
                          [u[2], v[2], w[2], a[2]], [0.0, 0.0, 0.0, 1.0]])
    return hcs
Ejemplo n.º 7
0
def cc_int(p1, r1, p2, r2):
    """
    Intersect circle (p1,r1) circle (p2,r2)
    where p1 and p2 are 2-vectors and r1 and r2 are scalars
    Returns a list of zero, one or two solution points.
    """
    d = norm(p2 - p1)
    if not tol_gt(d, 0):
        return []
    u = ((r1 * r1 - r2 * r2) / d + d) / 2
    if tol_lt(r1 * r1, u * u):
        return []
    elif r1 * r1 < u * u:
        v = 0.0
    else:
        v = math.sqrt(r1 * r1 - u * u)
    s = (p2 - p1) * u / d
    if tol_eq(norm(s), 0):
        p3a = p1 + vector([p2[1] - p1[1], p1[0] - p2[0]]) * r1 / d
        if tol_eq(r1 / d, 0):
            return [p3a]
        else:
            p3b = p1 + vector([p1[1] - p2[1], p2[0] - p1[0]]) * r1 / d
            return [p3a, p3b]
    else:
        print("***")
        print(p1)
        print(s)
        print(vector([s[1], -s[0]]))
        print(v)
        print(norm(s))
        print("***")
        p3a = p1 + s + vector([s[1], -s[0]]) * v / norm(s)
        if tol_eq(v / norm(s), 0):
            return [p3a]
        else:
            p3b = p1 + s + vector([-s[1], s[0]]) * v / norm(s)
            return [p3a, p3b]
Ejemplo n.º 8
0
def test_sss_int():
    p1 = randvec(3, 0.0, 10.0, 1.0)
    p2 = randvec(3, 0.0, 10.0, 1.0)
    p3 = randvec(3, 0.0, 10.0, 1.0)
    p4 = randvec(3, 0.0, 10.0, 1.0)
    #p1 = vector([0.0,0.0,0.0])
    #p2 = vector([1.0,0.0,0.0])
    #p3 = vector([0.0,1.0,0.0])
    #p4 = vector([1.0,1.0,1.0])
    d14 = norm(p4 - p1)
    d24 = norm(p4 - p2)
    d34 = norm(p4 - p3)
    sols = sss_int(p1, d14, p2, d24, p3, d34)
    sat = True
    for sol in sols:
        # print sol
        d1s = norm(sol - p1)
        d2s = norm(sol - p2)
        d3s = norm(sol - p3)
        sat = sat and tol_eq(d1s, d14)
        sat = sat and tol_eq(d2s, d24)
        sat = sat and tol_eq(d3s, d34)
        # print sat
    return sat
Ejemplo n.º 9
0
def sss_int(p1, r1, p2, r2, p3, r3):
    """Intersect three spheres, centered in p1, p2, p3 with radius r1,r2,r3
    respectively. 
    Returns a list of zero, one or two solution points.
    """
    solutions = []
    # plane though p1, p2, p3
    n = cross(p2 - p1, p3 - p1)
    n = n / norm(n)
    # intersect circles in plane
    cp1 = vector([0.0, 0.0])
    cp2 = vector([norm(p2 - p1), 0.0])
    cpxs = cc_int(cp1, r1, cp2, r2)
    if len(cpxs) == 0:
        return []
    # px, rx, nx is circle
    px = p1 + (p2 - p1) * cpxs[0][0] / norm(p2 - p1)
    rx = abs(cpxs[0][1])
    # plane of intersection cicle
    nx = p2 - p1
    nx = nx / norm(nx)
    # print "px,rx,nx:",px,rx,nx
    # py = project p3 on px,nx
    dy3 = dot(p3 - px, nx)
    py = p3 - (nx * dy3)
    if tol_gt(dy3, r3):
        return []
    ry = math.sin(math.acos(abs(dy3 / r3))) * r3
    # print "py,ry:",py,ry
    cpx = vector([0.0, 0.0])
    cpy = vector([norm(py - px), 0.0])
    cp4s = cc_int(cpx, rx, cpy, ry)
    for cp4 in cp4s:
        p4 = px + (py - px) * cp4[0] / norm(py - px) + n * cp4[1]
        solutions.append(p4)
    return solutions
Ejemplo n.º 10
0
 def _merge_transform_3D(self, other):
     """returns a matrix for a rigid transformation 
        such that points in other are mapped onto points in self
     """
     shared = set(self.vars()).intersection(other.vars())
     underconstrained = self.underconstrained or other.underconstrained
     if len(shared) == 0:
         underconstrained = True
         cs1 = make_hcs_3d(vector([0.0, 0.0, 0.0]), vector([0.0, 1.0, 0.0]),
                           vector([0.0, 0.0, 1.0]))
         cs2 = make_hcs_3d(vector([0.0, 0.0, 0.0]), vector([0.0, 1.0, 0.0]),
                           vector([0.0, 0.0, 1.0]))
     elif len(shared) == 1:
         if len(self.vars()) > 1 and len(other.vars()) > 1:
             underconstrained = True
         v1 = list(shared)[0]
         p1s = self.map[v1]
         p1o = other.map[v1]
         cs1 = make_hcs_3d(p1s, p1s + vector([1.0, 0.0, 0.0]),
                           p1s + vector([0.0, 1.0, 0.0]))
         cs2 = make_hcs_3d(p1o, p1o + vector([1.0, 0.0, 0.0]),
                           p1o + vector([0.0, 1.0, 0.0]))
     elif len(shared) == 2:
         if len(self.vars()) > 2 and len(other.vars()) > 2:
             underconstrained = True
         v1 = list(shared)[0]
         p1s = self.map[v1]
         p1o = other.map[v1]
         v2 = list(shared)[1]
         p2s = self.map[v2]
         p2o = other.map[v2]
         p3s = p1s + cross(p2s - p1s, perp2D(p2s - p1s))
         p3o = p1o + cross(p2o - p1o, perp2D(p2s - p1s))
         if tol_eq(norm(p2s - p1s), 0.0):
             underconstrained = True
         cs1 = make_hcs_3d(p1s, p2s, p3s)
         cs2 = make_hcs_3d(p1o, p2o, p3o)
     else:  # len(shared) >= 3:
         v1 = list(shared)[0]
         v2 = list(shared)[1]
         v3 = list(shared)[2]
         p1s = self.map[v1]
         p2s = self.map[v2]
         p3s = self.map[v3]
         cs1 = make_hcs_3d(p1s, p2s, p3s)
         if tol_eq(norm(p2s - p1s), 0.0):
             underconstrained = True
         if tol_eq(norm(p3s - p1s), 0.0):
             underconstrained = True
         if tol_eq(norm(p3s - p2s), 0.0):
             underconstrained = True
         p1o = other.map[v1]
         p2o = other.map[v2]
         p3o = other.map[v3]
         cs2 = make_hcs_3d(p1o, p2o, p3o)
         if tol_eq(norm(p2o - p1o), 0.0):
             underconstrained = True
         if tol_eq(norm(p3o - p1o), 0.0):
             underconstrained = True
         if tol_eq(norm(p3o - p2o), 0.0):
             underconstrained = True
     # in any case:
     t = cs_transform_matrix(cs2, cs1)
     t.underconstrained = underconstrained
     return t