Ejemplo n.º 1
0
def _tile_process_(args):
    _filelist, _outfile, _band_order, _tile_dict, _composite_type = args
    _tile_coords = _tile_dict['block_coords']
    _xmin, _ymin = _tile_dict['first_pixel']

    _x, _y, _cols, _rows = _tile_coords

    _outfile = '/vsimem/' + Handler(_outfile).basename.split('.tif')[0] + \
               '_{}.tif'.format('_'.join([str(j) for j in _tile_coords]))

    _mraster = MultiRaster(_filelist)
    _layerstack_vrt = _mraster.layerstack(return_vrt=True, outfile=_outfile)

    _lras = Raster('_tmp_layerstack')
    _lras.datasource = _layerstack_vrt
    _lras.initialize()
    _tile_arr = _lras.get_tile(_band_order, _tile_coords).copy()

    if _composite_type == 'mean':
        _temp_arr = np.apply_along_axis(lambda x: np.mean(x[x != _lras.nodatavalue])
                                        if (x[x != _lras.nodatavalue]).shape[0] > 0
                                        else _lras.nodatavalue, 0, _tile_arr)
    elif _composite_type == 'median':
        _temp_arr = np.apply_along_axis(lambda x: np.median(x[x != _lras.nodatavalue])
                                        if (x[x != _lras.nodatavalue]).shape[0] > 0
                                        else _lras.nodatavalue, 0, _tile_arr)
    elif _composite_type == 'max':
        _temp_arr = np.apply_along_axis(lambda x: np.max(x[x != _lras.nodatavalue])
                                        if (x[x != _lras.nodatavalue]).shape[0] > 0
                                        else _lras.nodatavalue, 0, _tile_arr)

    elif _composite_type == 'min':
        _temp_arr = np.apply_along_axis(lambda x: np.min(x[x != _lras.nodatavalue])
                                        if (x[x != _lras.nodatavalue]).shape[0] > 0
                                        else _lras.nodatavalue, 0, _tile_arr)

    elif 'pctl' in _composite_type:
        pctl = int(_composite_type.split('_')[1])
        _temp_arr = np.apply_along_axis(lambda x: np.percentile(x[x != _lras.nodatavalue], pctl)
                                        if (x[x != _lras.nodatavalue]).shape[0] > 0
                                        else _lras.nodatavalue, 0, _tile_arr)
    else:
        _temp_arr = None

    _lras = None
    _mraster = None
    Handler(_outfile).file_delete()
    _tile_arr = None

    return (_y-_ymin), ((_y-_ymin) + _rows), (_x-_xmin), ((_x-_xmin) + _cols), _temp_arr
Ejemplo n.º 2
0
def main(gedi_dir, temp_dir, bounds_file, outfile, nproc, res):

    """
    Main function to execute python script
    """

    nproc = int(nproc) - 1

    attrib = {'BEAM': 'int', 'FILE': 'str', 'YEAR': 'int', 'JDAY': 'int'}

    res = float(res)

    bounds_vec = Vector(bounds_file)
    bounds_wkt = bounds_vec.wktlist[0]

    args_list = list((filename, temp_dir, bounds_wkt, res)
                     for filename in Handler(dirname=gedi_dir).find_all('*.h5'))

    n_files = len(args_list)

    Opt.cprint('Number of files: {}'.format(str(n_files)))

    out_res = {}

    Handler(outfile).file_delete()

    pool = mp.Pool(processes=nproc)

    for file_output, err_str in pool.imap_unordered(get_path, args_list):
        if err_str is None and len(file_output) > 0:
            add_on = ''
            count = 0
            for geom_wkt, attrs in file_output:
                if geom_wkt is not None:
                    write_to_txt(geom_wkt, attrs, outfile)
                    out_res[geom_wkt] = attrs
                    count += 1
            if count > 0:
                add_on = ' - FOUND {} BEAMS'.format(str(count))
            out_str = str(list(set([attr['FILE'] for _, attr in file_output]))[0]) + ' : READ' + add_on
            Opt.cprint(out_str)
        else:
            if err_str is None:
                err_str = 'Unknown File I/O Error'

            Opt.cprint('{}: {}'.format(file_output,
                                       err_str))
    pool.close()

    Opt.cprint(outfile)
Ejemplo n.º 3
0
def _get_tile_data_(_filelist, _outfile, _band_order, _tile_specs, _composite_type):
    _vrtfile = '/vsimem/' + Handler(_outfile).basename.split('.tif')[0] + '_tmp_layerstack.vrt'
    _outfile = '/vsimem/' + Handler(_outfile).basename.split('.tif')[0] + '_tmp_layerstack.tif'

    _mraster = MultiRaster(_filelist)
    _layerstack_vrt = _mraster.layerstack(return_vrt=True, outfile=_outfile)

    _lras = Raster('_tmp_layerstack')
    _lras.datasource = _layerstack_vrt
    _lras.initialize()
    _lras.make_tile_grid(*_tile_specs)

    for _ii in range(_lras.ntiles):
        yield _filelist, _outfile, _band_order, _lras.tile_grid[_ii], _composite_type
Ejemplo n.º 4
0
def write_to_txt(geom_wkt_str,
                 attr,
                 outfile_name):
    """
    Method to write or append a geometry and attribute to a text file
    :param geom_wkt_str: Geometry WKT string
    :param attr: Dictionary of attributes
    :param outfile_name: Name of output file
    :return: None
    """

    if outfile is None:
        raise ValueError("No file name for writing")

    if Handler(outfile_name).file_exists():
        with open(outfile_name, 'a') as f:
            f.write(str(geom_wkt_str) + ' ; ' + json.dumps(attr) + '\n')
    else:
        with open(outfile_name, 'w') as f:
            f.write(str(geom_wkt_str) + ' ; ' + json.dumps(attr) + '\n')
Ejemplo n.º 5
0
        '#6C327A', '#62E162', '#2F8066', '#F56D94', '#3E9FEF', '#A0B48C',
        '#764728', '#EF963E', '#A45827'
    ]

    area = 'area'

    decid_arr = np.zeros((9, 3), dtype=np.float64)
    decid_uarr = decid_arr.copy()

    tc_arr = decid_arr.copy()
    tc_uarr = decid_arr.copy()

    area_arr = decid_arr.copy()

    for i, plotfile in enumerate(plotfiles):
        file_dicts = Handler(plotdir +
                             plotfile).read_from_csv(return_dicts=True)
        for file_dict in file_dicts:
            for j, zone in enumerate(zones):
                if file_dict['ZONE_NAME'] == zone[0]:

                    # decid
                    decid_perc = file_dict[decid_diff_names[2]] / (
                        file_dict[area]) * 100.0
                    # decid perc
                    decid_uperc = file_dict[decid_diff_names[1]] / (
                        file_dict[area]) * 100.0
                    # tc
                    tc_perc = file_dict[tc_diff_names[2]] / (file_dict[area])
                    # tc perc
                    tc_uperc = file_dict[tc_diff_names[1]] / (file_dict[area])
Ejemplo n.º 6
0
    '''
    # infile = "C:/temp/decid_tc_2000_layerstack-0000026880-0000161280.tif"
    infile = "D:/temp/albedo/decid_tc_2000-0000098304-0000425984_clip_1deg_1deg.tif"
    outdir = "D:/temp/albedo/"

    pickle_dir = "d:/shared/Dropbox/projects/NAU/landsat_deciduous/data/albedo_data/"
    picklefiles = ("RFalbedo_deciduous_fraction_treecover_50000_cutoff_5_deg1_20200501T185635_spring.pickle",
                   "RFalbedo_deciduous_fraction_treecover_50000_cutoff_5_deg1_20200501T185635_summer.pickle",
                   "RFalbedo_deciduous_fraction_treecover_50000_cutoff_5_deg1_20200501T185635_fall.pickle")

    picklefiles = [pickle_dir + picklefile for picklefile in picklefiles]

    band_name = 'spr_albedo'


    outfile = outdir + Handler(Handler(infile).basename).add_to_filename('_output3')

    Handler(outfile).file_remove_check()

    # raster contains three bands: 1) decid 2) tree cover 3) land extent mask.
    # all the bands are in integer format
    raster = Raster(infile)
    raster.initialize()
    raster.bnames = ['decid', 'treecover']

    raster.get_stats(True)

    Opt.cprint(raster.shape)

    regressor = RFRegressor.load_from_pickle(picklefiles[0])
Ejemplo n.º 7
0
    Opt.cprint('Band order: ' + ', '.join([str(b) for b in band_order]))

    # re-initialize raster
    ras.initialize(get_array=True, band_order=band_order)

    Opt.cprint(ras)
    Opt.cprint(ras.bnames)

    Opt.cprint('Multipliers: {}\n'.format(str(band_multipliers)))

    hierarchical_regressor = HRFRegressor(regressor=(rf_regressor1,
                                                     rf_regressor2))

    print(hierarchical_regressor)

    uncert_file = Handler(ras.name).add_to_filename('_uncertainty')

    if not Handler(uncert_file).file_exists():

        # classify raster and write to file
        classif = hierarchical_regressor.regress_raster(
            ras,
            tile_size=tile_size,
            output_type='median',
            band_name='prediction',
            outdir=outdir,
            nodatavalue=nodatavalue,
            band_multipliers=band_multipliers)
        Opt.cprint(classif)

        classif.write_to_file(compress='lzw', bigtiff='yes')
        attr_dict = dict()
        for k, v in attr.items():
            attr_dict[k] = Vector.string_to_ogr_type(v, 'name')

        order = np.argsort(
            np.array([
                int(attr_dict[fire_year_col]) for attr_dict in vec.attributes
            ])).tolist()

        x_min, x_max, y_min, y_max = vec.layer.GetExtent()
        sys.stdout.write('Extent: {}\n'.format(' '.join(
            [str(x_min), str(x_max),
             str(y_min), str(y_max)])))

        for year in range(start_year, end_year):
            outfile = outfolder + Handler(infile).basename.split(
                '.shp')[0] + '_year_{}_250m.tif'.format(str(year))

            sys.stdout.write(
                '---------------------\nOutfile: {}\n'.format(outfile))

            if type(attr[fire_year_col]) in (int, float, long):
                layer = vec.datasource.ExecuteSQL(
                    "SELECT * from {} WHERE {}={}".format(
                        vec.name, fire_year_col, str(year)))
            elif type(attr[fire_year_col]) == str:
                layer = vec.datasource.ExecuteSQL(
                    "SELECT * from {} WHERE {}='{}'".format(
                        vec.name, fire_year_col, str(year)))
            else:
                raise ValueError(
                    "unknown or null property type for selected attribute")
Ejemplo n.º 9
0
    boreal_bounds = "D:/shared/Dropbox/projects/NAU/landsat_deciduous/data/STUDY_AREA/boreal/" \
                    "NABoreal_simple_10km_buffer_geo.shp"

    year_bins = [(1984, 1997), (1998, 2002), (2003, 2007), (2008, 2012),
                 (2013, 2018)]

    # script-----------------------------------------------------------------------------------------------

    boreal_vec = Vector(boreal_bounds)
    boreal_geom = Vector.get_osgeo_geom(boreal_vec.wktlist[0])

    year_samp = list(list() for _ in range(len(year_bins)))
    year_samp_reduced = list(list() for _ in range(len(year_bins)))

    # get data and names
    file_data = Handler(infile).read_from_csv(return_dicts=True)
    header = list(file_data[0])

    print('\nTotal samples: {}'.format(str(len(file_data))))

    boreal_samp_count = 0

    # bin all samples based on sample years using year_bins
    for elem in file_data:
        for i, years in enumerate(year_bins):
            if years[0] <= elem['year'] <= years[1]:
                year_samp[i].append(elem)

    # take mean of all samples of the same site that fall in the same year bin
    for i, samp_list in enumerate(year_samp):
        print('year: {}'.format(str(year_bins[i])))
Ejemplo n.º 10
0
from geosoup import Vector, Handler
import argparse
import sys

if __name__ == "__main__":

    # script, filename = sys.argv

    in_folder = "D:/temp/above2017_0629_lvis2b/l2b/"
    out_folder = "D:/temp/above2017_0629_lvis2b_tif/"

    spref = osr.SpatialReference()
    spref.ImportFromEPSG(4326)
    spref_wkt = spref.ExportToWkt()

    filelist = Handler(dirname=in_folder).find_all('*.h5')

    for hdf5_file in filelist:
        outfile = out_folder + Handler(hdf5_file).basename.replace(
            '.h5', '.tif')

        print(
            '\n==============================================================================================='
        )

        print('Input file: {}'.format(hdf5_file))
        print('Output file: {}'.format(outfile))

        fs = h5py.File(hdf5_file, 'r')

        file_keys = []
Ejemplo n.º 11
0
def read_gee_extract_data(filename):
    """
    Method to read sample data in the form of a site dictionary with samples dicts by year
    :param filename: Input data file name
    :return: dict of list of dicts by year
    """

    lines = Handler(filename).read_from_csv(return_dicts=True)

    site_dict = dict()
    line_counter = 0
    for j, line in enumerate(lines):

        include = True
        for key, val in line.items():
            if type(val).__name__ == 'str':
                if val == 'None':
                    include = False

        if saturated_bands(line['radsat_qa']) \
                or line['GEOMETRIC_RMSE_MODEL'] > 15.0 \
                or unclear_value(line['pixel_qa']):
            include = False

        if include:
            line_counter += 1
            site_year = str(line['site']) + '_' + str(line['year'])

            if site_year not in site_dict:
                geom_wkt = Vector.wkt_from_coords((line['longitude'], line['latitude']))
                site_dict[site_year] = {'geom': geom_wkt,
                                        'decid_frac': line['decid_frac'],
                                        'data': dict(),
                                        'site_year': line['year'],
                                        'site': line['site']}

            temp_dict = dict()

            sensor_dict = extract_date(line['LANDSAT_ID'])

            temp_dict['img_jday'] = sensor_dict['date'].timetuple().tm_yday
            temp_dict['img_year'] = sensor_dict['date'].timetuple().tm_year
            temp_dict['sensor'] = sensor_dict['sensor']

            bands = list('B' + str(ii + 1) for ii in range(7)) + ['slope', 'elevation', 'aspect']

            band_dict = dict()
            for band in bands:
                if band in line:
                    band_dict[band] = line[band]

            temp_dict['bands'] = correct_landsat_sr(band_dict,
                                                    sensor_dict['sensor'],
                                                    scale=0.0001)

            site_dict[site_year]['data'].update({'{}_{}'.format(str(temp_dict['img_jday']),
                                                                str(temp_dict['img_year'])): temp_dict})

    # print(line_counter)

    return site_dict
Ejemplo n.º 12
0
                if len(num_list) > 1:

                    md_vec = [md_vec[x] for x in num_list]

                    # find all MD values that as less than cutoff percentile
                    loc = list(i for i, x in enumerate(md_vec)
                               if (x <= np.percentile(md_vec, md_cutoff) and x != np.nan))

                    out_samples += list(binned_samp_dicts[i] for i in loc)

                else:
                    out_samples += binned_samp_dicts

            else:

                Opt.cprint('Too few samples for cleaning')

                out_samples += binned_samp_dicts

        Opt.cprint('After Mahalanobis dist removal of all samp above {} percentile: {}'.format(str(md_cutoff),
                                                                                               str(len(out_samples))))
    else:
        out_samples = out_list

    Handler.write_to_csv(out_samples, outfile)

    Opt.cprint('Done!')



Ejemplo n.º 13
0
def get_path(args):
    """
    Method to extract path from a GEDI file
    args:
        filename: GEDI filename
        bounds_wkt: WKT representation of boundary geometry
        res: bin resolution (degrees) (default : 0.1 degrees)
        buffer: buffer in degrees

    :return: (attribute dictionary, geometry WKT, None) if no error is raised while opening file
            (None, None, error string) if error is raised
    """

    pt_limit = 15
    verbose = False

    filename, temp_dir, boundary_wkt, spatial_resolution = args

    if verbose:
        Opt.cprint('Working on - {} '.format(Handler(filename).basename))

    Handler(filename).copy_file(temp_dir)

    temp_filename = temp_dir + Handler(filename).basename

    date_str = Handler(temp_filename).basename.split('_')[2]

    year = int(date_str[0:4])
    julian_day = int(date_str[4:7])

    bounds_geom = ogr.CreateGeometryFromWkt(boundary_wkt)

    file_keys = []
    try:
        fs = h5py.File(temp_filename, 'r')
        fs.visit(file_keys.append)
    except Exception as e:
        return Handler(temp_filename).basename, ' '.join(e.args)

    beam_ids = list(set(list(key.split('/')[0].strip() for key in file_keys if 'BEAM' in key)))

    feat_list = []
    err = 'No Keys found'

    for beam in beam_ids:
        beam_id = int(beam.replace('BEAM', ''), 2)

        if verbose:
            Opt.cprint('\nBEAM - {}'.format(beam_id), newline='  ')

        try:
            lat_arr = np.array(fs['{}/geolocation/latitude_bin0'.format(beam)])
            lon_arr = np.array(fs['{}/geolocation/longitude_bin0'.format(beam)])
        except Exception as e:
            err = ' '.join(e.args)
            continue

        # make an array of lat lon
        pt_arr = np.vstack([lon_arr, lat_arr]).T

        # remove NaN values
        nan_loc_pre = np.where(np.apply_along_axis(lambda x: (not (np.isnan(x[0])) and (not np.isnan(x[1]))),
                                                   1, pt_arr))
        pt_arr = pt_arr[nan_loc_pre]
        groups = group_nearby(pt_arr)

        # find start and end of valid strips
        chunks = list(pt_arr[elem[0]:(elem[1] + 1), :] for elem in groups)

        main_geom = ogr.Geometry(ogr.wkbMultiLineString)

        any_geom = False

        # find polygons for each strip and add to main_geom
        for chunk in chunks:

            if chunk.shape[0] <= pt_limit:
                if verbose:
                    Opt.cprint('chunk too short size={},'.format(chunk.shape[0]), newline='  ')
                continue
            else:
                if verbose:
                    Opt.cprint('chunk size={},'.format(str(chunk.shape[0])), newline=' ')

                try:
                    resampled_chunk = resample_chunk(chunk, spatial_resolution)
                except Exception as e:
                    if verbose:
                        Opt.cprint('invalid chunk({})'.format(e.args[0]), newline='  ')
                    continue

                part_geom_json = json.dumps({'type': 'Linestring', 'coordinates': resampled_chunk.tolist()})
                part_geom = Vector.get_osgeo_geom(part_geom_json, 'json')

                if part_geom.Intersects(bounds_geom):
                    any_geom = True

                    part_geom_intersection = part_geom.Intersection(bounds_geom)

                    # add to main geometry
                    main_geom.AddGeometryDirectly(part_geom_intersection)

        attributes = {'BEAM': beam_id,
                      'FILE': Handler(temp_filename).basename,
                      'YEAR': year,
                      'JDAY': julian_day}

        if any_geom:
            # Opt.cprint(attributes)
            wkt = main_geom.ExportToWkt()
            main_geom = None
        else:
            wkt = None

        feat_list.append((wkt, attributes))

    fs.close()
    Handler(temp_filename).file_delete()

    if len(feat_list) == 0:
        return Handler(filename).basename, err
    else:
        return feat_list, None
Ejemplo n.º 14
0
if __name__ == '__main__':

    infilename = "D:/Shared/Dropbox/projects/NAU/landsat_deciduous/data/samples/CAN_PSP/" \
        "CAN_PSPs_Hember-20180207T213138Z-001/CAN_PSPs_Hember/NAFP_L4_SL_ByJur_R16d_ForBrendanRogers1.csv"

    outfilename = "D:/Shared/Dropbox/projects/NAU/landsat_deciduous/data/samples/CAN_PSP/" \
        "CAN_PSPs_Hember-20180207T213138Z-001/CAN_PSPs_Hember/NAFP_L4_SL_ByJur_R16d_ForBrendanRogers1_lat52_ABoVE.shp"

    bounds = "D:/Shared/Dropbox/projects/NAU/landsat_deciduous/data/STUDY_AREA/ABoVE_Study_Domain_geo.shp"

    bounds_vec = Vector(bounds)
    bounds_geom = bounds_vec.features[0].GetGeometryRef()

    attr = {'ID_Plot': 'str', 'Lat': 'float', 'Lon': 'float'}

    samp_data = Handler(infilename).read_from_csv(return_dicts=True)

    wkt_list = list()
    attr_list = list()

    spref_str = '+proj=longlat +datum=WGS84'
    latlon = list()
    count = 0
    for row in samp_data:
        print('Reading elem: {}'.format(str(count + 1)))

        elem = dict()
        for header in list(attr):
            elem[header] = row[header]

        samp_geom = Vector.get_osgeo_geom(
Ejemplo n.º 15
0
                    continue

                elif 'ServerNotFoundError' in e.args[0] or \
                        'Unable to find the server' in e.args[0] or \
                        'getaddrinfo failed' in e.args[0] or \
                        'connection attempt failed' in e.args[0]:

                    log.lprint('Waiting 30 secs...'.format(str(wait)))
                    time.sleep(wait)
                    continue

            else:
                continue

        # all extracted dictionaries to file
        if not Handler(OUTFILE).file_exists():
            Handler.write_to_csv(temp_dicts,
                                 header=True,
                                 append=False,
                                 outfile=OUTFILE)

        else:
            Handler.write_to_csv(temp_dicts,
                                 header=False,
                                 append=True,
                                 outfile=OUTFILE)

        time2 = datetime.datetime.now()

        log.lprint(
            'Time taken for site {s} ({ii} of {nn}): {t} seconds'.format(
Ejemplo n.º 16
0
    yvar = 'albedo'
    zvar = 'treecover'

    xlabel = 'deciduous_fraction'
    ylabel = 'albedo'
    zlabel = 'treecover'

    xvar_bands = ['decid2010', 'decid2005', 'decid2000']
    zvar_bands = ['tc2010', 'tc2005', 'tc2000']
    oz_bands = ['connected_mask_val18', 'land_extent']

    print('Reading file : {}'.format(csv_file))

    val_dicts = Handler(csv_file).read_from_csv(
        return_dicts=True,
        read_random=True,
        line_limit=None,
    )

    basename = Handler(csv_file).basename.split('.csv')[0]

    plot_file = in_dir + "RF{}_{}_{}_{}_cutoff_{}_deg{}_{}.png".format(
        ylabel, xlabel, zlabel, str(bin_limit),
        str(int(z_thresh * scaledown_treecover)), deg,
        datetime.now().isoformat().split('.')[0].replace('-', '').replace(
            ':', ''))
    print('Plot file: {}'.format(plot_file))

    # -------------------- spring -----------------------------------------------------------------------

    yvar_bands = [
Ejemplo n.º 17
0
        trn_outfile = outdir + "ABoVE_AK_all_2010_trn_samp_original.csv"
        val_outfile = outdir + "ABoVE_AK_all_2010_val_samp_original.csv"

    # names to append to samples' header
    header = ['site',
              'sample']

    # bands used as features for cleaning the samples
    bandnames = ['NDVI',
                 'NDVI_1',
                 'NDVI_2']

    # script-----------------------------------------------------------------------------------------------

    # get data and names
    names, data = Handler(infile).read_csv_as_array()

    for name in names[1:-1]:
        header.append(name)

    print(header)

    site_data = list()

    # convert strings like '1_125_3' into sites and samples
    for elem in data:
        index = elem[0].split('_')

        if len(index) == 3:

            site_id = int(index[0])*10000 + int(index[1])
Ejemplo n.º 18
0
    tile_size = (1024, 1024)

    image_bounds = (-130.999, -90.0, 40.0, 50.0)  # xmin, xmax, ymin, ymax
    '''
    script, file_folder, outdir, startyear, endyear, startdate, enddate, reducer, ver, nthreads = sys.argv

    tile_size = (1024, 1024)
    image_bounds = (-179.999, -50.0, 30.0, 75.0)  # xmin, xmax, ymin, ymax

    startyear = int(startyear)
    endyear = int(endyear)
    startdate = int(startdate)
    enddate = int(enddate)
    nthreads = int(nthreads)-1

    all_files = Handler(dirname=file_folder).find_all('*_albedo.tif')
    num_list = np.array(list(list(int(elem_) for elem_
                                  in Handler(elem).basename.replace('_albedo.tif', '').replace('bluesky_albedo_',
                                                                                               '').split('_'))
                             for elem in all_files))

    tile_specs = (tile_size[0], tile_size[1], image_bounds, 'crs')

    pool = mp.Pool(processes=nthreads)

    Opt.cprint((startdate, enddate))
    Opt.cprint((startyear, endyear))
    Opt.cprint(len(all_files))

    outfile = outdir + '/albedo_composite_{}_{}_{}_{}_{}_v{}.tif'.format(reducer,
                                                                         str(startyear),
Ejemplo n.º 19
0
    fig = plt.figure(figsize=(22, 10))
    gs = gridspec.GridSpec(10, 22)  # rows, cols

    # -----------------------------------------------------------------------------------------------------------

    scale = 1e11

    ylim = (-5.0, 3.0)

    decid_cparr = np.zeros((9, ), dtype=np.float64)
    decid_cnarr = np.zeros((9, ), dtype=np.float64)

    decid_ucparr = decid_cparr.copy()
    decid_ucnarr = decid_cnarr.copy()

    file_dicts = Handler(forc_file).read_from_csv(return_dicts=True)

    for file_dict in file_dicts:
        for j, zone in enumerate(zones):
            if file_dict['ZONE_NAME'] == zone[0]:
                # print(file_dict)
                decid_cparr[j] = file_dict[decid_names[0]] / (scale * 1e4)
                decid_cnarr[j] = file_dict[decid_names[1]] / (scale * 1e4)

                decid_ucparr[j] = (file_dict[decid_names[0]] /
                                   (scale * 1e4)) * 0.33
                decid_ucnarr[j] = (file_dict[decid_names[1]] /
                                   (scale * 1e4)) * 0.25

    # zone_names = sorted(list(set(zone_names)))
    ax1 = fig.add_subplot(gs[1:9, 1:10])
Ejemplo n.º 20
0
                # first slice west of 0 deg lon
                first_slice = np.vstack([arr[channel_indx, (arr.shape[1] - row_indx - 1), cut_loc:]
                                         for row_indx in range(arr.shape[1])])

                # second slice east of 0 deg lon
                second_slice = np.vstack([arr[channel_indx, (arr.shape[1] - row_indx - 1), :cut_loc]
                                         for row_indx in range(arr.shape[1])])

                resliced_arr_list.append(np.hstack([first_slice, second_slice]))

            # stack all months
            arr = np.stack(resliced_arr_list, 0)

            # name output file
            outfile = Handler(file1).dirname + Handler().sep + 'ALBEDO_CAM5_{}_KERNEL.tif'.format(var_names[variable])

            # define raster object
            ras = Raster(outfile,
                         array=arr,
                         bnames=months,
                         dtype=GDAL_FIELD_DEF['double'],
                         shape=arr.shape,
                         transform=transform,
                         crs_string=spref.ExportToWkt())

            # define no data value
            ras.nodatavalue = data._FillValue

            # write raster object
            ras.write_to_file()