Ejemplo n.º 1
0
def run_simple2(graph):
    election = Election("2014 Senate", {
        "Democratic": "sen_blue",
        "Republican": "sen_red"
    },
                        alias="2014_Senate")

    initial_partition = Partition(graph,
                                  assignment="con_distri",
                                  updaters={
                                      "2014_Senate":
                                      election,
                                      "population":
                                      Tally("population", alias="population"),
                                      "exterior_boundaries":
                                      exterior_boundaries,
                                      "interior_boundaries":
                                      interior_boundaries,
                                      "perimeter":
                                      perimeter,
                                      "boundary_nodes":
                                      boundary_nodes,
                                      "cut_edges":
                                      cut_edges,
                                      "area":
                                      Tally("area", alias="area"),
                                      "cut_edges_by_part":
                                      cut_edges_by_part,
                                      "county_split":
                                      county_splits('county_split',
                                                    "COUNTY_ID"),
                                      "black_population":
                                      Tally("black_pop",
                                            alias="black_population"),
                                  })
    districts_within_tolerance_2 = lambda part: districts_within_tolerance(
        part, 'population', 0.3)
    is_valid = Validator(
        [single_flip_contiguous, districts_within_tolerance_2])

    chain = MarkovChain(
        proposal=propose_random_flip,
        is_valid=is_valid,
        accept=always_accept,
        #     accept=accept, #THe acceptance criteria is what needs to be defined ourselves - to match the paper
        initial_state=initial_partition,
        total_steps=30,
    )
    efficiency_gaps = []
    wins = []

    for partition in chain:
        if (hasattr(partition, 'accepted') and partition.accepted):
            efficiency_gaps.append(
                gerrychain.scores.efficiency_gap(partition["2014_Senate"]))
            wins.append(partition["2014_Senate"].wins("Democratic"))

    return (efficiency_gaps, wins, partition)
Ejemplo n.º 2
0
def test_districts_within_tolerance_returns_true_if_districts_are_within_tolerance():
    # 100 and 100.1 are not within 1% of each other, so we should expect True
    mock_partition = {"population": {0: 100.0, 1: 100.1}}

    result = districts_within_tolerance(
        mock_partition, attribute_name="population", percentage=0.01
    )

    assert result is True
Ejemplo n.º 3
0
def test_districts_within_tolerance_returns_false_if_districts_are_not_within_tolerance(
):
    # 100 and 1 are not within 1% of each other, so we should expect False
    mock_partition = {'population': {0: 100.0, 1: 1.0}}

    result = districts_within_tolerance(mock_partition,
                                        attribute_name='population',
                                        percentage=0.01)

    assert result is False
Ejemplo n.º 4
0
def run_simple(graph, num_samples = 80000, wp = 3000, wi = 2.5, wc = 0.4, wm = 800, get_parts = 5):
    election = Election(
        "2014 Senate",
        {"Democratic": "sen_blue", "Republican": "sen_red"},
        alias="2014_Senate"
    )
    
    initial_partition = Partition(
            graph,
            assignment="2014_CD",
            updaters={
                "2014_Senate": election,
                "population": Tally("population", alias="population"), 
                "exterior_boundaries": exterior_boundaries,
                "interior_boundaries": interior_boundaries,
                "perimeter": perimeter,
                "boundary_nodes": boundary_nodes,
               "cut_edges": cut_edges,
                "area": Tally("area", alias="area"),
               "cut_edges_by_part": cut_edges_by_part, 
                "county_split" : county_splits( 'county_split', "COUNTY_ID"),
                "black_population": Tally("black_pop", alias = "black_population"),
            }
        )
    
    def vra_validator(part):
        if(vra_district_requirement(part, 2, [0.4, 0.335]) > 0):
            return False
        return True

    districts_within_tolerance_2 = lambda part : districts_within_tolerance(part, 'population', 0.12)
    is_valid = Validator([single_flip_contiguous, districts_within_tolerance_2, vra_validator ])
    def accept(partition, counter):
        if(counter < 40000):
            beta = 0
        elif(counter < 60000):
            beta = (counter - 40000) /(60000-40000)
        else:
            beta = 1
        return(metro_scoring_prob(partition, beta, wp, wi, wc, wm))

    chain = MarkovChainAnneal(
        proposal=propose_random_flip,
        is_valid=is_valid,
        accept=accept,
        initial_state=initial_partition,
        total_steps= num_samples * 100,
    )
    # going to show 5 partitions from this sample
    part_con = max(1, num_samples / get_parts)
    
    efficiency_gaps = []
    wins = []
    voting_percents = []
    sample_parts = []
    tbefore = time.time()
    for partition in chain:
        if(hasattr(partition, 'accepted') and partition.accepted):
            efficiency_gaps.append(gerrychain.scores.efficiency_gap(partition["2014_Senate"]))
            wins.append(partition["2014_Senate"].wins("Democratic"))
            voting_percents.append(partition["2014_Senate"].percents("Democratic"))
            num_s = len(wins)
            if(num_s % part_con) == 0:
                sample_parts.append(partition)
            if(num_s> num_samples):
                break
            if(num_s % 1000 == 0):
                tnext = time.time()
                print("It took %i time to get 1000 samples" % (tnext - tbefore))
                tbefore = time.time()
    return(efficiency_gaps, wins, voting_percents, sample_parts)