def test_search_pokemon_by_number(self): #pokemon = requests.get('https://pokeapi.co/api/v2/pokemon/1') my_data = GetData() pokemon = my_data.get('1') # Comentamos lo de arribaa, ahora vamos a recuperar la información del pokemon a consultar data = my_data.get_pokemon_data('bulbasaur') my_pokemon = pokemon.json() self.assertEqual(200, pokemon.status_code) self.assertEqual(my_pokemon['name'], data['name'])
def test_search_valid_pokemon(self): # Get, se realiza sobre una URL, utilizamos un endpoint para recuperar su información #pokemon = requests.get('https://pokeapi.co/api/v2/pokemon/pikachu') # Cambiamos por el endpoint Kakuna #Vamos a llamar al método que tiene nuestra url base, le vamos a pasar como parámetro #el pokemon que vamos a querer de endpoint para traer su información #Creamos el objeto de la clase getData my_data = GetData() pokemon = my_data.get('kakuna') my_pokemon = pokemon.json() #pokemon = requests.get('https://pokeapi.co/api/v2/pokemon/kakuna') #my_pokemon = pokemon.json() #Verificamos el código del estado #print(pokemon.status_code) #Va a devolver la infomación del endpoint (pokemon/pikachu) en formato json #print(my_pokemon) #Quiero que solo me devuelva la información de la propiedad weight #print(my_pokemon['weight']) # Quiero recuperar la información de los movimientos (tiene 5) del pokemon kakuna #print(my_pokemon['moves']) # Estamos verificando el movimiento en el índice 4 #print(my_pokemon['moves'][4]) #Me voy a traer la información que se encuentra en el archivo kakuna.json #por tanto, ya no voy a utilizar la lista moves que se muestra abajo. #Para ello voy a importar la librería json #with open('kakuna.json') as kakuna: # data = json.load(kakuna) #Comentamos lo de arriba, ahora vamos a recuperar la información del pokemon a consultar data = my_data.get_pokemon_data('kakuna') #Ahora en una variable voy a asignar los 5 movimientos del pokemon Kakuna #moves = ['string-shot', 'harden', 'iron-defense', 'bug-bite', 'electroweb'] #Ahora quiero saber si 200 es el valor que devolvio el request cuyo valor es 200, es decir si esta OK self.assertEqual(200, pokemon.status_code) #Pikachu, quiero verificar que 60 sea el valor de la propiedad => weight cuyo valor es 60 #kakuna, quiero verificar que 100 sea el valor de la propiedad => weight cuyo valor es 100 #self.assertEqual(100, my_pokemon['weight']) self.assertEqual(data['weight'], my_pokemon['weight']) #Va a recorrer todos los elementos de los movimientos for i in my_pokemon['moves']: #Ahora si se puede recorrer el array, porque i es un elemento del array porque esta iterando print(i['move']['name']) #Vamos a verificar que los elementos que recorra de la lista my_pokemon['moves] #si se encuentran también en la lista de elementos de moves #self.assertTrue(i['move']['name'] in moves) self.assertTrue(i['move']['name'] in data['moves'])
def main(K, alpha=0.5, iterations=300): # get data datagetter = GetData("data/Amazon.mat") A, X, gnd = datagetter.readFile() Anorm = normA.noramlization(A) A = torch.tensor(A, dtype=torch.float32) X = torch.tensor(X, dtype=torch.float32) gnd = torch.tensor(gnd, dtype=torch.float32) Anorm = torch.tensor(Anorm, dtype=torch.float32) samples = datagetter.returnSamples() attributes = datagetter.returnAttributes() # model if torch.cuda.is_available(): A = A.cuda() X = X.cuda() gnd = gnd.cuda() Anorm = Anorm.cuda() dominant = Dominant.DominantModel(Anorm, attributes) dominant = dominant.cuda() else: dominant = Dominant.DominantModel(Anorm, attributes) gd = torch.optim.Adam(dominant.parameters(), lr=0.005) # print(dominant) # training for iter in range(iterations): reconstructionStructure, reconstructionAttribute = dominant(X) loss = alpha * torch.norm(reconstructionStructure - A) + ( 1 - alpha) * torch.norm(reconstructionAttribute - X) gd.zero_grad() loss.backward() gd.step() # get score if torch.cuda.is_available(): structureError = (reconstructionStructure - A).cpu().detach().numpy() attributeError = (reconstructionAttribute - X).cpu().detach().numpy() else: structureError = (reconstructionStructure - A).detach().numpy() attributeError = (reconstructionAttribute - X).detach().numpy() structureLoss = np.linalg.norm(structureError, axis=1, keepdims=True) attributeLoss = np.linalg.norm(attributeError, axis=1, keepdims=True) score = alpha * structureLoss + (1 - alpha) * attributeLoss RecallatK = calculateRecallAtK(score, gnd, K) PrecisionatK = calculatePrecisionAtK(score, gnd, K) print("Recall @ {}: \t{}".format(K, RecallatK)) print("Recall @ {}: \t{}".format(K, PrecisionatK)) print("AUC value: \t{}".format(calculateAUC.getAUC(score=score, gnd=gnd)))
def test_search_valid_pokemon(self): my_data = GetData() #pokemon = requests.get('https://pokeapi.co/api/v2/pokemon/kakuna') pokemon = my_data.get('kakuna') my_pokemon = pokemon.json() with open('kakuna.json') as kakuna: data = json.load(kakuna) #moves = ['string-shot', 'harden', 'iron-defense', 'bug-bite', 'electroweb'] self.assertEqual(200, pokemon.status_code) self.assertEqual(data['weight'], my_pokemon['weight']) for i in my_pokemon['moves']: print(i['move']['name']) self.assertTrue(i['move'], ['name'] in data['moves'])
def startWriteData(Cookie): global rowIndex WriteData().writeFirst() for latitudeAndlongitude in latitudeAndlongitudeArr: print(latitudeAndlongitude) pageIndex = 0 shopList = GetData(Cookie).getShopList(pageIndex, latitudeAndlongitude) while shopList is not None and len(shopList) > 0: WriteData().write_excel(shopList, rowIndex, latitudeAndlongitude) pageIndex += 1 rowIndex += 1 shopList = GetData(Cookie).getShopList(pageIndex, latitudeAndlongitude)
def M1809_GetData(self): # self_result = self.AnalyseObj.Compare2Themself(self.company_id_list[0], # self.DataSource) # 自身对比 GetDataObj = GetData(self.DataSource, self.HstPath) self_result = GetDataObj.Compare2Themself(self.company_id_list[0]) b1 = GetDataObj.Compare2Industry(self.company_id_list) #同行业对比 compare_result = GetDataObj.data_normalize(b1) #归一化的同行业对比 if self.LocalStore == 'ON': SelfResultPath = os.path.join(self.OutPath + '\\compare_self.csv') ComparePath = os.path.join(self.OutPath + '\\compare_industry.csv') NomalizePath = os.path.join(self.OutPath + '\\normalize.csv') self_result.to_csv(SelfResultPath, encoding='gbk') b1.to_csv(ComparePath, encoding='gbk') compare_result.to_csv(NomalizePath, encoding='gbk') return self_result, compare_result
def main(dramaname, autor, act): u"""Main zum Ausführen des Programms.""" gd = GetData() gt = GetText() gs = GetSentiment() gm = GraphMalen() if dramaname: dramaname = dramaname else: dramaname = click.prompt('Gib den Namen eines Dramas ein') if autor: autor = autor else: autor = click.prompt('Gib den Nachnamen des Autors ein') draname = gd.eingabe_drama(dramaname, autor) tei = gd.get_tei(draname) csv_drama = gd.get_csv(draname) replik = gt.create_replik_dict(csv_drama) soup = gt.stir_the_soup(tei) if act: pass else: print("Das ausgewählte Drama hat {} Akte".format( gt.how_many_acts(soup))) act = click.prompt( 'Gib den Akt ein, den du analysieren willst (falls du das Netzwerk für das gesamte Drama haben möchtest, wähle 0)' ) which_act = int(act) - 1 if which_act == -1: total = gt.drama_total(soup) replik = gt.which_type(total, replik) else: act = gt.drama_act(soup, which_act) replik = gt.which_type(act, replik) replik = gs.get_sentis(replik) all_in_all = gs.average_senti(replik) nodes = gm.get_nodes(csv_drama) edges = gm.get_edges(all_in_all) labels_edges = gm.get_labels(edges) graph = gm.graph(edges, nodes) gm.malen(graph, labels_edges, draname, which_act + 1) os.system('clear') menu()
def show_data(entry): bookName = entry.get().strip() if bookName == '': entry.delete(0, tk.END) entry.insert(0, '') else: book = GetData(bookName) book_data = book.parsed_data() print(book_data) if type(book_data) == tuple: raw_data = urllib.request.urlopen(str(book_data[5])).read() im = PIL.Image.open(io.BytesIO(raw_data)) image = PIL.ImageTk.PhotoImage(im) label1.configure(image=image) label['text'] = "Book : " + str(book_data[0]) + '\n' + "Author : " + str(book_data[1]) + '\n' + "Published Year : " + str(book_data[2]) + '\n' + "Rating : " + str(book_data[3]) + '\n' + "Total Reviews : " + str(book_data[4]) label1.photo = image else : label['text'] = book_data entry.delete(0, tk.END) entry.insert(0, bookName)
def getup(getDataLength): # get data data = GetData(self.driver, getDataLength).get() getDataLength = len(data) # write CSV today = datetime.now().strftime("%Y%m%d") writeTime = datetime.now().strftime("%Y%m%d%H%M%S") table_name = "unipos_" + today file = self.file_path + "unipos_" + writeTime + ".csv" WriteCsv(data, file).write() sleep(5) UploadCSVtoBigquery(table_name, file) os.remove(file) print("remove" + file) return getDataLength
def write_excel(self, shopList, rowIndex, latitudeAndlongitude): for i in range(0, len(shopList)): currentRow = i + 1 + rowIndex * 8 print('正在写第{1}页第{0}个商家数据'.format(currentRow, rowIndex + 1)) # ################################################################## # 获取评论标签,获取一次即可,每次是一样的 commentList = GetData().getComments( shopList[i].get('restaurant').get('id'), latitudeAndlongitude) if commentList.get('tags') is not None: commentLabels = parseCommentLabels(commentList.get('tags')) for columnIndex in range(0, len(list(row0.values()))): if commentLabels.get(list( row0.keys())[columnIndex]) is not None: # print('commentlabel{1}'.format(commentLabels.get(list(row0.values())[columnIndex]))) sheet1.write( currentRow, columnIndex, commentLabels.get(list(row0.keys())[columnIndex]), defaultStyle) # ################################################################## # 获取评分 if commentList.get('rating') is not None: commentRatingLabels = commentList.get('rating') for columnIndex in range(0, len(list(row0.values()))): if commentRatingLabels.get(list( row0.keys())[columnIndex]) is not None: # print('commentlabel{1}'.format(commentLabels.get(list(row0.values())[columnIndex]))) sheet1.write( currentRow, columnIndex, commentRatingLabels.get( list(row0.keys())[columnIndex]), defaultStyle) # ################################################################## # 获取商家信息 for columnIndex in range(0, len(list(row0.values()))): if shopList[i].get('restaurant').get( list(row0.values())[columnIndex]) is not None: sheet1.write( currentRow, columnIndex, str(shopList[i].get('restaurant').get( list(row0.values())[columnIndex])), defaultStyle) # ################################################################## # 地址信息需要单独获取 shopAddress = GetData().getInfo( shopList[i].get('restaurant').get('id')) sheet1.write(currentRow, 1, shopAddress, defaultStyle) f.save('test.xls')
import externs conf = ConfigParser("conf/client/windows.cfg").get() elif osVer == "Linux": import externs conf = ConfigParser("conf/client/linux.cfg").get() def exit(signum, frame): externs.setWallpaper(bg) sys.exit() signal.signal(signal.SIGINT, exit) bg = externs.getWallpaper() data = GetData(conf) outFile = bg while True: output = data.run() # Need serialize / deserialize methods before this is even an option # datFile = open(saneConf.temp + "/datout.txt", "w") # datFile.write(str(data)) # datFile.close() if "wallpaper1.jpg" in outFile: outFile = "/wallpaper2.jpg" try: os.remove(saneConf.temp + "/wallpaper1.jpg") except OSError: pass
# ['2006-05-27-#ubuntu-positive.tsv', ':)'] # ] # load data from tsv and build data collection selected_features = [ "words", "negative_words", "positive_words", "positive_words_hashtags", "negative_words_hashtags", "uppercase_words", "special_punctuation", "adjectives" ] dataCollection = GetData(data_class, n_per_class, training_percentage, selected_features) # split data collection into training and test data training_data = dataCollection.get_training_data() training_label = np.array(dataCollection.get_training_label()) print('Extracting features...') # Get the feature matrix of this data print(' extracting train_data') training_features = dataCollection.get_training_feature_matrix() number_classes = len(data_class) number_of_clusters = 50
import openpyxl from openpyxl.workbook import Workbook def getConfig(section, key): config = configparser.ConfigParser() path = os.path.split(os.path.realpath(__file__))[0] + '/config.ini' config.read(path) return config.get(section, key) if __name__ == '__main__': choosen_stocks_num = int(getConfig('rrl', 'choosen_stocks_num')) window_len = int(getConfig('rrl', 'window_len')) rrl = RRL() getdata = GetData() print('train begin') print("============================================") train_data = getdata.train1() feed = { rrl.input: train_data, rrl.Ftminus1: getdata.Ftminus1, # rrl.cash: [[getdata.cash]], rrl.price: getdata.train_price } with tf.Session() as sess: sess.run(tf.initialize_all_variables()) for i in tqdm.tqdm(range(100)): print('\n') _, sr, ft = sess.run( [rrl.train_step_noholder, rrl.sharpe_ratio, rrl.outputs],
# 'failed': 'abort_state'}) # # sm.add('shelf_scan',ScanShelfState(), # transitions={'succeeded':'toggle_lip_on','failed':'abort_state'}) # # sm.add('toggle_lip_on', ToggleBinFillersAndTote(action='lip_on'), # transitions={'succeeded':'get_kinfu_cloud', # 'failed': 'abort_state'}) sm.add('get_kinfu_cloud',GetKinfuCloud(), transitions={'succeeded':'crop_kinfu_cloud','failed':'abort_state'}) sm.add('crop_kinfu_cloud',ShelfBasedCropCloud(), transitions={'succeeded':'get_data','failed':'reset_kinfu'}) sm.add('get_data', GetData(), transitions={'succeeded':'set_the_next_bin', 'failed':'reset_kinfu'}) sm.add('abort_state', AbortState(), transitions={'succeeded':'succeeded'}) # Create and start the introspection server # (smach_viewer is broken in indigo + 14.04, so need for that now) sis = smach_ros.IntrospectionServer('server_name', sm, '/SM_ROOT') sis.start() # run the state machine # We start it in a separate thread so we can cleanly shut it down via CTRL-C # by requesting preemption.
def test_search_pokemon_by_number(self): my_data = GetData() pokemon = my_data.get('1') my_pokemon = pokemon.json() self.assertEqual(200, pokemon.status_code) self.assertEqual(my_pokemon['name'], 'bulbasaur')
['../Data/Twitter/positive_tabed.tsv', 1, ':('], ] # load data from tsv and build data collection selected_features = [ "words", "negative_words", "positive_words", "positive_words_hashtags", "negative_words_hashtags", "uppercase_words", "special_punctuation", "adjectives" ] dataCollection = GetData(data_class, n_per_class, training_percentage, selected_features, is_bootstrap=False) # split data collection into training and test data training_data = dataCollection.get_training_data() training_label = dataCollection.get_training_label() test_data = dataCollection.get_test_data() test_label = dataCollection.get_test_label() print('\nExtracting features..') training_features = dataCollection.get_training_feature_matrix() test_features = dataCollection.get_test_feature_matrix() net = perceptron.Perceptron(n_iter=iteration, verbose=1, random_state=None, shuffle=False, class_weight='auto', eta0=0.0002) net.fit(training_features, training_label)
#!/usr/bin/python #coding:utf-8 from getData import GetData from sendData import Sender import datetime url = "http://192.168.1.5:8000/eq/equip_api/" #服务器的ip及提交的函数 try: data = GetData() sendData = data.getData() sender = Sender(url, sendData) #向指定的url发送获取的数据 sender.get_request() response = sender.get_response() print(response) except Exception as e: #报错机制 with open("/opt/CMDB/log.txt", "a+") as f: time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") content = "[%s]:%s\n" % (time, str(e)) f.write(content)
import requests,json # url地址 url = 'http://192.168.1.222:8000/servers/' + sys.argv[1] + '/' loginurl = "http://192.168.1.222:8000/login/" loginData = { "username":"******", "password":"******" } # 请求登录接口获取token getlogin = GetToken(loginurl,loginData) token = getlogin.getres() headers = { 'content-type': 'application/json', "Authorization":"JWT "+token} #采集数据 mydata = GetData() sendData = mydata.getData() # 发送数据 sender = Sender(url,sendData,headers) sender.get_request() response = sender.get_response() # 获取响应 print(response)