def cifar10_iterator(batch_size, data_shape, resize=-1, num_parts=1, part_index=0): get_data.GetCifar10() train = mx.io.ImageRecordIter( path_imgrec="data/cifar/train.rec", # mean_img = "data/cifar/mean.bin", resize=resize, data_shape=data_shape, batch_size=batch_size, rand_crop=True, rand_mirror=True, num_parts=num_parts, part_index=part_index) val = mx.io.ImageRecordIter( path_imgrec="data/cifar/test.rec", # mean_img = "data/cifar/mean.bin", resize=resize, rand_crop=False, rand_mirror=False, data_shape=data_shape, batch_size=batch_size, num_parts=num_parts, part_index=part_index) return train, val
def cifar10(batch_size, input_shape, num_parts=1, part_index=0): """return cifar10 iterator""" get_data.GetCifar10() train = mx.io.ImageRecordIter(path_imgrec="data/cifar/train.rec", mean_img="data/cifar/cifar_mean.bin", data_shape=input_shape, batch_size=batch_size, rand_crop=False, rand_mirror=False, shuffle=False, round_batch=False, num_parts=num_parts, part_index=part_index) val = mx.io.ImageRecordIter(path_imgrec="data/cifar/test.rec", mean_img="data/cifar/cifar_mean.bin", rand_crop=False, rand_mirror=False, shuffle=False, round_batch=False, data_shape=input_shape, batch_size=batch_size) return (train, val)
def data(data_dir, batch_size, num_parts=1, part_index=0): """return cifar10 iterator""" if data_dir == "data/cifar/": sys.path.insert(0, "../../tests/python/common") import get_data get_data.GetCifar10() input_shape = (3, 28, 28) train = mx.io.ImageRecordIter(path_imgrec=data_dir + "train.rec", mean_img=data_dir + "cifar_mean.bin", data_shape=input_shape, batch_size=batch_size, rand_crop=True, rand_mirror=True, num_parts=num_parts, part_index=part_index) val = mx.io.ImageRecordIter(path_imgrec=data_dir + "test.rec", mean_img=data_dir + "cifar_mean.bin", rand_crop=False, rand_mirror=False, data_shape=input_shape, batch_size=batch_size) return (train, val)
in4c = SimpleFactory(in4b, 80, 80) in4d = SimpleFactory(in4c, 48, 96) in4e = DownsampleFactory(in4d, 96) in5a = SimpleFactory(in4e, 176, 160) in5b = SimpleFactory(in5a, 176, 160) pool = mx.symbol.Pooling(data=in5b, pool_type="avg", kernel=(7, 7), name="global_pool") flatten = mx.symbol.Flatten(data=pool, name="flatten1") fc = mx.symbol.FullyConnected(data=flatten, num_hidden=10, name="fc1") softmax = mx.symbol.SoftmaxOutput(data=fc, name="loss") ######################################################### get_data.GetCifar10() batch_size = 128 num_epoch = 10 num_gpus = 1 train_dataiter = mx.io.ImageRecordIter(path_imgrec="data/cifar/train.rec", mean_img="data/cifar/cifar_mean.bin", rand_crop=True, rand_mirror=True, data_shape=(3, 28, 28), batch_size=batch_size, preprocess_threads=1, label_name='loss_label') test_dataiter = mx.io.ImageRecordIter(path_imgrec="data/cifar/test.rec", mean_img="data/cifar/cifar_mean.bin", rand_crop=False,