def main():
    train_set, valid_set, train_labels, valid_labels = get_dataset.main()

    neural_net = new_neuralnet(train_set)

    iteracoes_grid = int(sys.argv[1])
    iteracoes_train = int(sys.argv[2])

    # Treinando
    batch_size= 256
    learning_rate, lamb = grid_search(new_neuralnet, train_set, train_labels, iteracoes_grid)
    print_acuracia = True
    neural_net.train_neuralnet(train_set, train_labels, valid_set, valid_labels, lamb, learning_rate,batch_size,iteracoes_train, print_acuracia, 'nn_onehidden')
    neural_net.save_model("exp3_onehidden.npy")
Ejemplo n.º 2
0
def main():
    train_set, valid_set, train_labels, valid_labels = get_dataset.main()

    neural_softmax = new_neuralnet(train_set)

    iteracoes_grid = int(sys.argv[1])
    iteracoes_train = int(sys.argv[2])

    # Treinando
    batch_size = 256
    learning_rate, lamb = grid_search(new_neuralnet, train_set, train_labels, iteracoes_grid)
    print_acuracia = True
    neural_softmax.train_neuralnet(train_set, train_labels, valid_set, valid_labels, lamb, learning_rate, batch_size, iteracoes_train, print_acuracia, 'softmax_regression')
    
    neural_softmax.save_model("softmax.npy")
def main():
    train_set, valid_set, train_labels, valid_labels = get_dataset.main()
    X = train_set
    y = train_labels
    Xv = valid_set
    yv = valid_labels
    iteracoes_grid = int(sys.argv[1])
    iteracoes_train = int(sys.argv[2])
    batch_size = 256
    print_acc = True
    alpha = 0.02
    lamb = 0.001
    alpha, lamb = grid_search(OneVsAllClassifier, X, y, iteracoes_grid)
    #print("Vamos fazer one vs all no toy set!")
    cl = OneVsAllClassifier(X)
    cl.train_neuralnet(X, y, Xv, yv, alpha, lamb, batch_size, iteracoes_train,
                       print_acc, 'oneVall')