Ejemplo n.º 1
0
    def test_interp_in_time_next(self):
        """Ensures correct output from interp_in_time.

        In this case, method is next-neighbour.
        """

        this_query_matrix = interp.interp_in_time(
            INPUT_MATRIX_FOR_TEMPORAL_INTERP,
            sorted_input_times_unix_sec=INPUT_TIMES_UNIX_SEC,
            query_times_unix_sec=NEXT_INTERP_TIMES_UNIX_SEC,
            method_string=interp.NEXT_INTERP_METHOD)
        self.assertTrue(
            numpy.allclose(this_query_matrix,
                           EXPECTED_MATRIX_FOR_NEXT_INTERP,
                           atol=TOLERANCE))
Ejemplo n.º 2
0
    def test_interp_in_time_linear_extrap(self):
        """Ensures correct output from interp_in_time.

        In this case, method is linear with extrapolation.
        """

        this_query_matrix = interp.interp_in_time(
            INPUT_MATRIX_FOR_TEMPORAL_INTERP,
            sorted_input_times_unix_sec=INPUT_TIMES_UNIX_SEC,
            query_times_unix_sec=LINEAR_EXTRAP_TIMES_UNIX_SEC,
            method_string=interp.LINEAR_INTERP_METHOD,
            allow_extrap=True)
        self.assertTrue(
            numpy.allclose(this_query_matrix,
                           EXPECTED_MATRIX_FOR_LINEAR_EXTRAP,
                           atol=TOLERANCE))
Ejemplo n.º 3
0
    def test_interp_in_time_next(self):
        """Ensures correct output from interp_in_time.

        In this case, interpolation method is next-neighbour.
        """

        this_interp_matrix = interp.interp_in_time(
            input_matrix=INPUT_MATRIX_FOR_TEMPORAL_INTERP,
            sorted_input_times_unix_sec=INPUT_TIMES_UNIX_SEC,
            query_times_unix_sec=QUERY_TIMES_FOR_NEXT_NEIGH_UNIX_SEC,
            method_string=interp.NEXT_NEIGHBOUR_METHOD_STRING,
            extrapolate=False)

        self.assertTrue(
            numpy.allclose(this_interp_matrix,
                           INTERP_MATRIX_NEXT_TIME,
                           atol=TOLERANCE))
Ejemplo n.º 4
0
    def test_interp_in_time_extrap(self):
        """Ensures correct output from interp_in_time.

        In this case, interp_in_time will do only extrapolation.
        """

        this_interp_matrix = interp.interp_in_time(
            input_matrix=INPUT_MATRIX_FOR_TEMPORAL_INTERP,
            sorted_input_times_unix_sec=INPUT_TIMES_UNIX_SEC,
            query_times_unix_sec=QUERY_TIMES_FOR_EXTRAP_UNIX_SEC,
            method_string=interp.LINEAR_METHOD_STRING,
            extrapolate=True)

        self.assertTrue(
            numpy.allclose(this_interp_matrix,
                           TIME_EXTRAP_MATRIX,
                           atol=TOLERANCE))
def _interp_one_storm_in_time(storm_object_table_1cell,
                              storm_id=None,
                              query_time_unix_sec=None):
    """Interpolates location of one storm cell in time.

    The storm object nearest to the query time is advected as a whole -- i.e.,
    all vertices are moved by the same distance and in the same direction -- so
    that the interpolated storm object has a realistic shape.

    N = number of storm objects (snapshots of storm cell)
    V = number of vertices in a given storm object

    :param storm_object_table_1cell: N-row pandas DataFrame with the following
        columns.
    storm_object_table_1cell.unix_time_sec: Time of snapshot.
    storm_object_table_1cell.centroid_x_metres: x-coordinate of centroid.
    storm_object_table_1cell.centroid_y_metres: y-coordinate of centroid.
    storm_object_table_1cell.vertices_x_metres: length-V numpy array with x-
        coordinates of vertices.
    storm_object_table_1cell.vertices_y_metres: length-V numpy array with y-
        coordinates of vertices.
    :param storm_id: String ID for storm cell.
    :param query_time_unix_sec: Storm location will be interpolated to this
        time.
    :return: interp_vertex_table_1object: pandas DataFrame with the following
        columns (each row is one vertex of the interpolated storm object).
    interp_vertex_table_1object.storm_id: String ID for storm cell.
    interp_vertex_table_1object.vertex_x_metres: x-coordinate of vertex.
    interp_vertex_table_1object.vertex_y_metres: y-coordinate of vertex.
    """

    sort_indices = numpy.argsort(
        storm_object_table_1cell[tracking_io.TIME_COLUMN].values)
    centroid_matrix = numpy.vstack(
        (storm_object_table_1cell[CENTROID_X_COLUMN].values[sort_indices],
         storm_object_table_1cell[CENTROID_Y_COLUMN].values[sort_indices]))

    interp_centroid_vector = interp.interp_in_time(
        centroid_matrix,
        sorted_input_times_unix_sec=storm_object_table_1cell[
            tracking_io.TIME_COLUMN].values[sort_indices],
        query_times_unix_sec=numpy.array([query_time_unix_sec]),
        allow_extrap=True)

    absolute_time_diffs_sec = numpy.absolute(
        storm_object_table_1cell[tracking_io.TIME_COLUMN].values -
        query_time_unix_sec)
    nearest_time_index = numpy.argmin(absolute_time_diffs_sec)

    x_diff_metres = interp_centroid_vector[0] - storm_object_table_1cell[
        CENTROID_X_COLUMN].values[nearest_time_index]
    y_diff_metres = interp_centroid_vector[1] - storm_object_table_1cell[
        CENTROID_Y_COLUMN].values[nearest_time_index]

    num_vertices = len(
        storm_object_table_1cell[VERTICES_X_COLUMN].values[nearest_time_index])
    storm_id_list = [storm_id] * num_vertices

    interp_vertex_dict_1object = {
        tracking_io.STORM_ID_COLUMN:
        storm_id_list,
        VERTEX_X_COLUMN:
        storm_object_table_1cell[VERTICES_X_COLUMN].values[nearest_time_index]
        + x_diff_metres,
        VERTEX_Y_COLUMN:
        storm_object_table_1cell[VERTICES_Y_COLUMN].values[nearest_time_index]
        + y_diff_metres
    }
    return pandas.DataFrame.from_dict(interp_vertex_dict_1object)
Ejemplo n.º 6
0
def interp_tornadoes_along_tracks(tornado_table, interp_time_interval_sec):
    """Interpolates each tornado to many points along its track.

    :param tornado_table: See doc for `write_processed_file`.
    :param interp_time_interval_sec: Will interpolate at this time interval
        between start and end points.
    :return: tornado_segment_table: pandas DataFrame with the following columns,
        where each row is one tornado-track segment.
    tornado_segment_table.valid_time_unix_sec: Valid time.
    tornado_segment_table.latitude_deg: Latitude (deg N).
    tornado_segment_table.longitude_deg: Longitude (deg E).
    tornado_segment_table.tornado_id_string: Tornado ID.
    tornado_segment_table.fujita_rating: F-scale or EF-scale rating (integer
        from 0...5).
    """

    # TODO(thunderhoser): Return "width" column as well.

    num_tornadoes = len(tornado_table.index)
    tornado_times_unix_sec = numpy.array([], dtype=int)
    tornado_latitudes_deg = numpy.array([])
    tornado_longitudes_deg = numpy.array([])
    tornado_id_strings = []
    fujita_rating_strings = []

    for j in range(num_tornadoes):
        this_start_time_unix_sec = tornado_table[START_TIME_COLUMN].values[j]
        this_end_time_unix_sec = tornado_table[END_TIME_COLUMN].values[j]

        this_num_query_times = 1 + int(
            numpy.round(
                float(this_end_time_unix_sec - this_start_time_unix_sec) /
                interp_time_interval_sec))

        these_query_times_unix_sec = numpy.linspace(this_start_time_unix_sec,
                                                    this_end_time_unix_sec,
                                                    num=this_num_query_times,
                                                    dtype=float)

        these_query_times_unix_sec = numpy.round(
            these_query_times_unix_sec).astype(int)

        these_input_latitudes_deg = numpy.array([
            tornado_table[START_LAT_COLUMN].values[j],
            tornado_table[END_LAT_COLUMN].values[j]
        ])

        these_input_longitudes_deg = numpy.array([
            tornado_table[START_LNG_COLUMN].values[j],
            tornado_table[END_LNG_COLUMN].values[j]
        ])

        these_input_times_unix_sec = numpy.array([
            tornado_table[START_TIME_COLUMN].values[j],
            tornado_table[END_TIME_COLUMN].values[j]
        ],
                                                 dtype=int)

        if this_num_query_times == 1:
            this_query_coord_matrix = numpy.array(
                [these_input_longitudes_deg[0], these_input_latitudes_deg[0]])

            this_query_coord_matrix = numpy.reshape(this_query_coord_matrix,
                                                    (2, 1))
        else:
            this_input_coord_matrix = numpy.vstack(
                (these_input_longitudes_deg, these_input_latitudes_deg))

            this_query_coord_matrix = interp.interp_in_time(
                input_matrix=this_input_coord_matrix,
                sorted_input_times_unix_sec=these_input_times_unix_sec,
                query_times_unix_sec=these_query_times_unix_sec,
                method_string=interp.LINEAR_METHOD_STRING,
                extrapolate=False)

        tornado_times_unix_sec = numpy.concatenate(
            (tornado_times_unix_sec, these_query_times_unix_sec))

        tornado_latitudes_deg = numpy.concatenate(
            (tornado_latitudes_deg, this_query_coord_matrix[1, :]))

        tornado_longitudes_deg = numpy.concatenate(
            (tornado_longitudes_deg, this_query_coord_matrix[0, :]))

        this_id_string = create_tornado_id(
            start_time_unix_sec=these_input_times_unix_sec[0],
            start_latitude_deg=these_input_latitudes_deg[0],
            start_longitude_deg=these_input_longitudes_deg[0])

        tornado_id_strings += ([this_id_string] *
                               len(these_query_times_unix_sec))
        fujita_rating_strings += (
            [tornado_table[FUJITA_RATING_COLUMN].values[j]] *
            len(these_query_times_unix_sec))

    return pandas.DataFrame.from_dict({
        TIME_COLUMN:
        tornado_times_unix_sec,
        LATITUDE_COLUMN:
        tornado_latitudes_deg,
        LONGITUDE_COLUMN:
        tornado_longitudes_deg,
        TORNADO_ID_COLUMN:
        tornado_id_strings,
        FUJITA_RATING_COLUMN:
        fujita_rating_strings
    })