Ejemplo n.º 1
0
 def __init__(self):
   ##########
   # SOLVER #
   ##########
   self.flex = gflex.F1D()
   self.flex.Quiet = True
   self.flex.Method = 'FD'
   self.flex.Solver = 'direct'
   
   #############
   # CONSTANTS #
   #############
   self.flex.g = self.g # acceleration due to gravity
   self.flex.E = self.E # Young's Modulus
   self.flex.nu = self.nu # Poisson's Ratio
   self.flex.rho_m = self.rho_m # MantleDensity
   self.flex.rho_fill = self.rho_fill # InfiillMaterialDensity
Ejemplo n.º 2
0
def test_main():
    flex = gflex.F1D()

    flex.Quiet = True

    flex.Method = 'SAS'  # Solution method: * FD (finite difference)
    #                  * SAS (superposition of analytical solutions)
    #                  * SAS_NG (ungridded SAS)

    flex.Solver = 'direct'  # direct or iterative
    # convergence = 1E-3 # convergence between iterations, if an iterative solution
    # method is chosen

    flex.g = 9.8  # acceleration due to gravity
    flex.E = 65E9  # Young's Modulus
    flex.nu = 0.25  # Poisson's Ratio
    flex.rho_m = 3300.  # MantleDensity
    flex.rho_fill = 1000.  # InfiillMaterialDensity

    flex.Te = 30000.  #*np.ones(500) # Elastic thickness -- scalar but may be an array
    #flex.Te[-3:] = 0
    flex.qs = np.zeros(10)
    flex.qs[5] += 1E6  # surface load stresses
    flex.dx = 4000.  # grid cell size [m]
    flex.BC_W = '0Displacement0Slope'  # west boundary condition
    flex.BC_E = '0Moment0Shear'  # east boundary condition

    flex.initialize()
    flex.run()
    flex.finalize()

    # If you want to plot the output
    #flex.plotChoice='combo'
    # An output file for deflections could also be defined here
    # flex.wOutFile =
    flex.output()  # Plots and/or saves output, or does nothing, depending on
    # whether flex.plotChoice and/or flex.wOutFile have been set
    # TO OBTAIN OUTPUT DIRECTLY IN PYTHON, you can assign the internal variable,
    # flex.w, to another variable -- or as an element in a list if you are looping
    # over many runs of gFlex:
    deflection = flex.w
Ejemplo n.º 3
0
#! /usr/bin/env python

import gflex
import numpy as np
from matplotlib import pyplot as plt

flex = gflex.F1D()

flex.Quiet = True

flex.Method = 'SAS'  # Solution method: * FD (finite difference)
#                  * SAS (superposition of analytical solutions)
#                  * SAS_NG (ungridded SAS)

#flex.Solver = 'direct' # direct or iterative
# convergence = 1E-3 # convergence between iterations, if an iterative solution
# method is chosen

flex.g = 9.8  # acceleration due to gravity
flex.E = 65E9  # Young's Modulus
flex.nu = 0.25  # Poisson's Ratio
flex.rho_m = 3300.  # MantleDensity
flex.rho_fill = 1000.  # InfiillMaterialDensity

flex.Te = 30000.  #*np.ones(500) # Elastic thickness -- scalar but may be an array
#flex.Te[-3:] = 0
flex.qs = np.zeros(300)
flex.qs[150] += 1E6  # surface load stresses
flex.dx = 4000.  # grid cell size [m]
flex.BC_W = '0Displacement0Slope'  # west boundary condition
flex.BC_E = '0Moment0Shear'  # east boundary condition