Ejemplo n.º 1
0
filepaths = [".\S10_CF_004.glm", ".\S10_CF_005.glm", ".\S10_CF_006.glm"]

# Initialisation des structures servant à stocker les vakeurs de TF/NF et NF
# aux moments des glissements
all_mu_points_thumb = []
all_NF_thumb = []
all_mu_points_index = []
all_NF_index = []

#%% Filtrage des donnees
freqAcq = 800  # Frequence d'acquisition des donnees
freqFiltForces = 20
# Frequence de coupure du filtrage des forces (peut etre modifié)

for filepath in filepaths:
    glm_df = glm.import_data(filepath)
    for i in range(21, 43):
        glm_df.iloc[:, i] = glm.filter_signal(glm_df.iloc[:, i], freqAcq,
                                              freqFiltForces)

    #%% Extraction des signaux et mise a zero des forces en soustrayant la valeur
    # moyenne des 500 premieres ms
    baseline = range(0, 400)
    # Normal Force exerted by the thumb
    NF_thumb = glm_df.loc[:, 'Fygl'] - np.nanmean(glm_df.loc[baseline, 'Fygl'])
    # Vertical Tangential Force exerted by the thumb
    TFx_thumb = glm_df.loc[:, 'Fxgl'] - np.nanmean(glm_df.loc[baseline,
                                                              'Fxgl'])
    #Horizontal Tangential Force exerted by the thumb
    TFz_thumb = glm_df.loc[:, 'Fzgl'] - np.nanmean(glm_df.loc[baseline,
                                                              'Fzgl'])
Ejemplo n.º 2
0
    "SEFRD": np.zeros((80, 4800)),
    "SEFRDcount": 0
}

ntrials = 2  #Number of trials for each subject

# Double for-loop that runs thrgough all subjects and trials
subject_number = 0
for s in subjects:
    for exp in expe:
        for trial in range(1, ntrials + 1):
            # Set data path
            glm_path = "DataGroupe4/%s%s_00%d.glm" % (s, exp, trial)

            # Import data
            glm_df = glm.import_data(glm_path)

            baseline = range(0, 400)
            # Normal Force exerted by the thumb
            NF_thumb = glm_df.loc[:, 'Fygl'] - np.nanmean(glm_df.loc[baseline,
                                                                     'Fygl'])
            # Vertical Tangential Force exerted by the thumb
            TFx_thumb = glm_df.loc[:, 'Fxgl'] - np.nanmean(glm_df.loc[baseline,
                                                                      'Fxgl'])
            #Horizontal Tangential Force exerted by the thumb
            TFz_thumb = glm_df.loc[:, 'Fzgl'] - np.nanmean(glm_df.loc[baseline,
                                                                      'Fzgl'])

            # Normal Force exerted by the index
            NF_index = -(glm_df.loc[:, 'Fygr'] -
                         np.nanmean(glm_df.loc[baseline, 'Fygr']))
Ejemplo n.º 3
0

import glm_data_processing as glm
import get_mu_points as gmp
import get_mu_fit as gmf

# Fermeture des figures ouvertes
plt.close('all')

# Chemins d'acces aux fichiers (A MODIFIER)
filepath_strong = '.\S10_CF_004.glm'
filepath_medium = '.\S10_CF_005.glm'
filepath_weak = '.\S10_CF_006.glm'

# Importation des donnes
glm_strong_df = glm.import_data(filepath_strong)
glm_medium_df = glm.import_data(filepath_medium)
glm_weak_df = glm.import_data(filepath_weak)

#%% Filtrage des donnees
freqAcq=800 # Frequence d'acquisition des donnees
freqFiltForces=20; # Frequence de coupure du filtrage des forces (peut etre modifié)

for i in range(21,43):
    glm_strong_df.iloc[:,i]=glm.filter_signal(glm_strong_df.iloc[:,i],freqAcq,freqFiltForces)
    glm_medium_df.iloc[:,i]=glm.filter_signal(glm_medium_df.iloc[:,i],freqAcq,freqFiltForces)
    glm_weak_df.iloc[:,i]=glm.filter_signal(glm_weak_df.iloc[:,i],freqAcq,freqFiltForces)

# Frequence de coupure du filtrage du COP (peut etre modifié)
# COP = Center Of Pressure. Il s'agit de la résultante des forces appliquées 
# par le doigt sur le capteur. Cela donne donc une idee de la position du doigt