roi_files = model_csv.func_outdir + \ "/func/bandpass_freqs_0.01.0.1/rois_random_k3200.nii.gz" roi_files.to_csv(outfile, index=False, sep=" ") outfile = config.glm['infuncs2'] func_files = model_csv.func_outdir + \ "/func/bandpass_freqs_0.01.0.1/functional_mni_4mm.nii.gz" func_files.to_csv(outfile, index=False, sep=" ") ## Run glm # output directory base_glm = path.dirname(config.data['glm_dir']) if not path.exists(base_glm): os.mkdir(base_glm) # ok now run glm = GlmRun(**config.glm) glm.run() ## Summarize ## Goal: To easily represent the 4D GLM results (2D matrix) as 3D (1D vector) ## for easy visualization and comparison # output directory summarize_out = config.summarize['out_dir'] if not path.exists(summarize_out): os.mkdir(summarize_out) # get args arg_order = ["regressors", "mask", "rois", "tvals", "out_dir"] args = [config.summarize[arg] for arg in arg_order] arg3 = ""
config_file = "config_%s.yml" % scan config = YamlReader(config_file) config.compile() ## Create Model/Contrasts model = GlmModel(**config.model) model.run() # still not spitting out the stdout in real-time model.save() ## Run glm # output directory base_glm = path.dirname(config.data['glm_dir']) if not path.exists(base_glm): os.mkdir(base_glm) # ok now run glm = GlmRun(**config.glm) # NOTE: this doesn't really work right now, glm.run() # do this step manually ## Summarize ## Goal: To easily represent the 4D GLM results (2D matrix) as 3D (1D vector) ## for easy visualization and comparison # output directory summarize_out = config.summarize['out_dir'] if not path.exists(summarize_out): os.mkdir(summarize_out) # get args arg_order = ["regressors", "mask", "tvals", "out_dir"] args = [config.summarize[arg] for arg in arg_order] arg3 = ""
config_file = "config_%s.yml" % scan config = YamlReader(config_file) config.compile() ## Create Model/Contrasts model = GlmModel(**config.model) model.run() # still not spitting out the stdout in real-time model.save() ## Run glm # output directory base_glm = path.dirname(config.data['glm_dir']) if not path.exists(base_glm): os.mkdir(base_glm) # ok now run glm = GlmRun(**config.glm) # NOTE: this doesn't really work right now, glm.run() # do this step manually ## Summarize ## Goal: To easily represent the 4D GLM results (2D matrix) as 3D (1D vector) ## for easy visualization and comparison # output directory summarize_out = config.summarize['out_dir'] if not path.exists(summarize_out): os.mkdir(summarize_out) # get args arg_order = ["regressors", "mask", "tvals", "out_dir"] args = [ config.summarize[arg] for arg in arg_order ] arg3 = ""
"/func/bandpass_freqs_0.01.0.1/rois_random_k3200.nii.gz" roi_files.to_csv(outfile, index=False, sep=" ") outfile = config.glm['infuncs2'] func_files = model_csv.func_outdir + \ "/func/bandpass_freqs_0.01.0.1/functional_mni_4mm.nii.gz" func_files.to_csv(outfile, index=False, sep=" ") ## Run glm # output directory base_glm = path.dirname(config.data['glm_dir']) if not path.exists(base_glm): os.mkdir(base_glm) # ok now run glm = GlmRun(**config.glm) glm.run() ## Summarize ## Goal: To easily represent the 4D GLM results (2D matrix) as 3D (1D vector) ## for easy visualization and comparison # output directory summarize_out = config.summarize['out_dir'] if not path.exists(summarize_out): os.mkdir(summarize_out) # get args arg_order = ["regressors", "mask", "rois", "tvals", "out_dir"] args = [ config.summarize[arg] for arg in arg_order ]