def main(): # Initialize global variables global_var.init() # Generate a new solution grid sg.generate_grid(global_var.NEW_BOARD) # Print formatted new solution grid print("\nGenerated solution grid: ") print_board(global_var.NEW_BOARD) # Strip values from solution grid to create puzzle pg.strip_values(global_var.NEW_BOARD) # Print new puzzle print("\nNew puzzle: ") print_board(global_var.NEW_BOARD) # Print given puzzle print("\nGiven puzzle: ") print_board(global_var.NEW_BOARD) # Solve given puzzle s.solve(global_var.NEW_BOARD) # Print formatted solution to given puzzle print("\nSolved puzzle: ") print_board(global_var.NEW_BOARD) print(s.BRANCH_DIFFICULTY_SCORE)
def initialize(): """initialize the global variable""" #initilize the global variable global_var.init() cf = configparser.ConfigParser() cf.read('main.conf') global_var.set_value('filename', cf.get('file', 'filename')) global_var.set_value('filepath', cf.get('file', 'filepath')) global_var.set_value('image_weight', cf.get('image', 'weight')) global_var.set_value('image_height', cf.get('image', 'height')) global_var.set_value('host', cf.get('mysql', 'host')) global_var.set_value('username', cf.get('mysql', 'username')) global_var.set_value('passwd', cf.get('mysql', 'passwd')) global_var.set_value('database', cf.get('mysql', 'database')) global_var.set_value('classnum', cf.get('dataset', 'class_num')) global_var.set_value('log_dir', cf.get('network', 'log_dir')) global_var.set_value('delta', cf.get('network', 'delta')) global_var.set_value('dropout', cf.get('network', 'dropout')) global_var.set_value('embedding_size', cf.get('network', 'embedding_size')) global_var.set_value('cluster_num', cf.get('network', 'cluster_num')) global_var.set_value('batch_size', cf.get('network', 'batch_size')) global_var.set_value('rnn_epoch', cf.get('network', 'rnn_epoch')) global_var.set_value('cnn_epoch', cf.get('network', 'cnn_epoch')) global_var.set_value('hidden_neural_size', cf.get('network', 'hidden_neural_size')) global_var.set_value('hidden_layer_num', cf.get('network', 'hidden_layer_num')) global_var.set_value('cnn_learning_rate', cf.get('network', 'cnn_learning_rate')) global_var.set_value('rnn_learning_rate', cf.get('network', 'rnn_learning_rate')) global_var.set_value('num_step', cf.get('network', 'num_step'))
from tkinter import * from global_var import init from view.login import Login if __name__ == '__main__': init() main_window = Tk() Login(main_window) main_window.mainloop()
from db import SessionLocal from sqlalchemy.orm.session import Session from sqlalchemy.util.langhelpers import dependencies from fastapi import Depends, FastAPI, HTTPException, status from fastapi.middleware.cors import CORSMiddleware from routers import authentication, statistics, user, order, result, nlp, admin, teacher_promo from routers.teacher_promo import get_free_qualified_teacher import models import schemas from dependencies import engine, get_db from config import custom_openapi from fastapi.responses import HTMLResponse from fastapi.openapi.utils import get_openapi import global_var global_var.init() models.Base.metadata.create_all(bind=engine) app = FastAPI(title="ScoreMyEssay API") origins = ["*"] app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"], )
import global_var as gvr import global_fe as gfe import model as mdl import utly print('\nStarting program...') gvr.init() val = utly.check() if (val): print('\nDataset not found.') gfe.createDataset() else: print('\nDataset found.') mdl.classify() print('\nProgram executed successfully.')