list_average_queuelength = []
list_average_queuingtimes = []
all_queue_lengths_overtime = np.zeros((len(diff_serverns), end_n_actions + 1))
queuelengthforrepetitios = np.zeros((n_simulations, end_n_actions + 1))

# run the simulation multiple times
i = 0
for n_server in diff_serverns:
    queuelengthforrepetitios = np.zeros((n_simulations, end_n_actions + 1))

    for j in range(0, n_simulations):
        mu = 0.80
        l = 0.64 * n_server

        # initialize the global lists
        init_global(end_n_actions)

        # create a simpy environment
        env = simpy.Environment()

        # set up the system
        env.process(
            setup(env, n_server, mu, l, sjf, end_n_actions, db_helptime,
                  LT_value))

        # run the program
        env.run()

        average_queuelength = np.average(global_variables.queue_length_list)
        list_average_queuelength.append(average_queuelength)
Ejemplo n.º 2
0
n_batches = (end_n_actions-initialisation_period)/batch_size/2.
sjf = False  # True to use shortest job first

'''Run simulation for different values of rho'''
list_nf_confidence_average_queuetimes = []
list_total_average_queuetimes = []
mu_range = np.arange(l+0.01, 0.8, 0.05)
for mu in mu_range:
    list_average_queuelength = []
    list_average_queuingtimes = []

    # run the simulation multiple times
    for i in range(n_simulations):

        # initialize the global lists
        init_global()

        # create a simpy environment
        env = simpy.Environment()

        # set up the system
        env.process(setup(env, n_server, mu, l, sjf, end_n_actions, "M", LT_value))

        # run the program
        env.run()

        average_queuelength = np.average(global_variables.queue_length_list)
        list_average_queuelength.append(average_queuelength)

        list_batch_averages = batch_averages(batch_size, initialisation_period)
        average_queuingtimes = np.average(global_variables.time_spend_in_queue_list)